
5th Marathon of Parallel Programming

SBAC’10
October 28th, 2010.

Rules

For all problems, read carefully the input and output session. For all problems, a

sequential implementation is given, and it is against the output of those implementations

that the output of your programs will be compared to decide if your implementation is

correct. You can modify the program in any way you see fit, except when the problem

description states otherwise. You must upload a tar.gz with your source code, the

Makefile and an execution script. The program to execute should have the name of the

problem. You can submit as many solutions to a problem as you want. Only the last

submission will be considered. The Makefile must have the rule all and will be used to

compile your source code before submit. The execution script must follow the Cluster

Altix-XE submitting rules – that will be inspected not to corrupt the target machine.

All teams have access to the target machine during the marathon. Your execution is

queued by the Sun Grid Engine (SGE) and does not have concurrent process. During the

marathon, SGE will be examined to find any suspect execution.

The execution time of your program will be measured running it with time program and

taking the real CPU time given. Each program will be executed at least twice with the

same input and only the smaller time will be taken into account. The sequential program

given will be measured the same way. You will earn points in each problem,

corresponding to the division of the sequential time by the time of your program

(speedup). The team with the most points at the end of the marathon will be declared the

winner.

This problem set contains 5 problems; pages are numbered from 1 to 8.

5th Marathon of Parallel Programming – SBAC’2010 1

Problem A
TSP

The Traveling Salesman Problem –TSP – is a well known problem in computing area

because of its complexity and time consuming (CPU-bound). Given a list of cities and

their pairwise distances, the task is to find a shortest possible path that visits each city

exactly once.

A TSP problem can be modeler as an undirected graph, such that cities are the graph’s

vertices, paths are the graph’s edges, and a path’s distance is the edge’s weight.

Write a parallel version that find the solution to the symmetric TSP problem (for all pair

i, j, Cij = Cji)

Input
The input contains only one test case. The first line contains two integers: the number of

vertices in the problem (C) and the number of edges (E) separated by a single blank

space (1 ≤ C ≤ 50, 1 ≤ E ≤ 104). The next E lines contain three integers that represent

the path between two vertices (I, J) and its weight (W) separated by a single space

(1 ≤ I, J ≤ C, 1 ≤ W ≤ 105). Remember that Cij = Cji.

The input must be read from a file named tsp.in

Output
The output contains only one line with the number of the shortest possible tour for a

symmetric TSP.

The output must be written to a file named tsp.out

Example
Input

4 6
1 2 3
1 3 3
1 4 2
2 3 2
2 4 3
3 4 1

Output for the input

8

5th Marathon of Parallel Programming – SBAC’2010 2

Problem B
Smooth

In image-processing area, there is a simple smooth algorithm that reduces noise and also

reduces the amount of intensity variation between groups of pixels. This algorithm is a

mean filtering and has the effect of eliminating pixel values which are unrepresentative

of their surroundings.

Usually, this smooth algorithm takes a 3x3 group of pixels and calculates the average of

the new pixel, as shown on Figure B.1.

Figure B.1. x4’ is the new value for x4 pixel in a 3x3 group.

Write a parallel version of this smooth algorithm. The sequential program uses it in a

movie project.

Input
A movie project has up to 4000 images and all images have the same size (max.

2048x1536 pixels). On all images, a pixel is represented by a 32 bits word. The input

file is in binary format: the first 32 bits word represents the width of an image; the next

32 bits word represents the height of an image; all the images come next, until the end

of file.

The movie project must be read from a file named movie.in

Output
The output file must be in binary format, keeping the same structure from input file.

This output file must have all the processed images.

The output must be written to a file named movie.out

5th Marathon of Parallel Programming – SBAC’2010 3

Problem C
Matrix

Based on the mathematical concepts, matrix is a two-dimension array of numbers (or

variables representing numbers). An n x m matrix has n rows and m columns of

elements.

A multiplication of two matrices, A and B, produces the matrix C, whose elements, ci,j,

can be computed as follows:

∑
−

=

=
1

0
,,,

p

k
jkkiji bac

where A is an m x p matrix and B is a p x n matrix (0 ≤ i < n, 0 ≤ j < m). This

multiplication is illustrated in Figure C.1.

Figure C.1. – Matrix multiplication, C = A x B.

Write a parallel program that computes the multiplication of two matrices.

Input
The input contains only one test case. The first line contains two integers: the numbers

of rows (M) and the number of columns (P) of a matrix A separated by a blank space

(0 ≤ M, P < 5000). The next M lines contain P integers in each line separated by a blank

space representing the am,p element of the matrix A (0 ≤ m < M, 0 ≤ p < P). The next

line contains two integers: the numbers of rows (P) and the numbers of columns (N) of a

matrix B separated by a blank space (0 ≤ N < 5000). Notice that the same value P is

guarantee in the input. The next P lines contain N integers in each line representing the

bp,n element of the matrix B (0 ≤ n < N).

The input must be read from a file named matrix.in

5th Marathon of Parallel Programming – SBAC’2010 4

Output
The output must contain M lines. Each line contains N elements separated by a single

blank space representing the cn,m element of the matrix C (0 ≤ n < N, 0 ≤ m < M).

The output must be written to a file named matrix.out

Example

Input

4 3
2 3 0
0 2 -1
1 0 2
3 1 4
3 3
2 2 -1
7 1 -4
8 1 3

Output for the input

25 7 -14
6 1 -11
18 4 5
45 11 5

5th Marathon of Parallel Programming – SBAC’2010 5

Problem D
Gauss Elimination

Suppose the existence of a linear equation:

111,122,111,100,1

211,222,211,200,2

111,122,111,100,1

011,022,011,000,0

...
............

...

...

...

−−−−−−−

−−

−−

−−

=++++

=++++
=++++
=++++

nnnnnnn

nn

nn

nn

bxaxaxaxa

bxaxaxaxa
bxaxaxaxa
bxaxaxaxa

witch, in matrix form, is

bAx =

The objective of solving this system of equations is to find values for the unknowns x0,

x1, …, xn-1, given values for a0,0, a0,1, …, an-1,n-1, and b0, b1, …, bn-1.

The Gauss Elimination algorithm transforms this linear equation into a triangular

system of equation. It uses the characteristic of linear equation that any row can be

replaced by that row added to another row multiplied by a constant. This has the effect

of making all the elements in the ith column below the ith row zero because

0
,

,
,,, =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+=

ii

ij
iiijij a

a
aaa

Figure D.1 show the situation when row i is being considered.

Figure D.1. Gaussian elimination.

5th Marathon of Parallel Programming – SBAC’2010 6

To minimize decimal problems, this procedure is modified into so-called partial

pivoting by swapping the ith row with the row below it that has the largest absolute

element in the ith column of any of the rows below the ith row if there is one.

Write a parallel program that solves the linear equation using the Gauss Elimination.

Input
The input contains only one test case. The first line contains one integer (N)

representing the number of unknowns and the number of rows/columns if matrix A

(1 ≤ N ≤ 4000). The next N lines contains N integers that represent the ai,j element of the

equation in the matrix separated by a single space (1 ≤ ai,j ≤ 20). The last line contains N

integers separated by a space representing the elements of the bn vector.

The input must be read from a file named gauss.in

Output
The output contains only one line with N values separated by a single space representing

the vector xn, where each value has exactly two decimal precision.

The output must be written to a file named gauss.out

Example

Input

3
6 2 -1
2 4 1
3 2 8
7 7 13

Output for the input

1.00 1.00 1.00

5th Marathon of Parallel Programming – SBAC’2010 7

Problem E
Quicksort

Quicksort is a popular sequential sorting algorithm that, on average, makes O(nlogn)

comparisons to sort n elements.

Figure E.1 show a tree structure for an unsorted vector of integers.

Figure E.1. Quicksort algorithm.

Write a parallel program that uses the Quicksort as the main algorithm to sort keys – the

solution can use other algorithms and Quicksort must be part of it.

Input
The input file contains only one test case. The first line contains the total number of

keys (N) to be sorted (1 ≤ N ≤ 1010). The following lines contain N keys, each key in a

separate line. A key is a seven-character string made up of printable characters (0x21 to

0x7E – ASCII) not including the space character (0x20 ASCII).

The input must be read from a file named quicksort.in

Output
The output file contains the sorted keys. Each key must be in a separate line.

The output must be written to a file named quicksort.out

5th Marathon of Parallel Programming – SBAC’2010 8

Example

Input

11
SINAPAD
SbacPad
Wscad10
Sinapad
1234567
LADGRID
WEAC-10
CTDeWIC
sinaPAD
MPP2010
SINApad

Output for the input

1234567
CTDeWIC
LADGRID
MPP2010
SINAPAD
SINApad
SbacPad
Sinapad
WEAC-10
Wscad10
sinaPAD

