6th Marathon of Parallel Programming
SBAC-PAD’11

October 27" 2011.

Rules

For all problems, read carefully the input and output session. For all problems, a
sequential implementation is given, and it is against the output of those implementations
that the output of your programs will be compared to decide if your implementation is
correct. You can modify the program in any way you see fit, except when the problem
description states otherwise. You must upload a compressed file with your source code,
the Makefile and an execution script. The program to execute should have the name of
the problem. You can submit as many solutions to a problem as you want. Only the last
submission will be considered. The Makefile must have the rule a//, which will be used
to compile your source code before submit. The execution script must follow the
Cluster Enterprise3 submitting rules — it will be inspected not to corrupt the target
machine.

All teams have access to the target machine during the marathon. Your execution is
queued by the Sun Grid Engine (SGE) and does not have concurrent process. During the
marathon, SGE will be examined to find any suspect execution.

The execution time of your program will be measured running it with time program and
taking the real CPU time given. Each program will be executed at least twice with the
same input and only the smaller time will be taken into account. The sequential program
given will be measured the same way. You will earn points in each problem,
corresponding to the division of the sequential time by the time of your program
(speedup). The team with the most points at the end of the marathon will be declared the

winner.

This problem set contains 5 problems; pages are numbered from I to 12.

6" Marathon of Parallel Programming — SBAC-PAD 2011 1

Problem A
Shellsort

Shellsort is an algorithm devised by Donald Shell in 1959. It is a generalization of the
insertion sort. It does an Ah-sort across the whole array. It means that every h™ element
belongs to a new array that must be sorted. The last step of the algorithm is an ordinary

insertion sort of the entire array (k4 = 1). Figure A.1 show part of this sort algorithm.

Original array:
[13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10]

5-sort
13 14 94 33 82
25 59 94 65 23
45 27 73 25 39
10

after
10 14 73 25 23
13 27 94 33 39
25 59 94 65 82
45

Partial ordered array:
[10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45]

3-sort
10 14 73
25 23 13
27 94 33
39 25 59
94 65 82
45

after
10 14 13
25 23 33
27 25 59
39 65 73
45 94 82
94

Partial ordered array:
[10 14 13 25 23 33 27 25 59 39 65 73 45 94 82 94]

Figure A.1 — Partial Shellsort with 5-sort and 3 sort.

The real problem of the Shellsort is choosing the values of 4. Besides, it is difficult to
evaluate and to prove their complexity while /4 decreases during the algorithm’s

iteration. All that is known is its basis complexity: O(n°).

6" Marathon of Parallel Programming — SBAC-PAD 2011 2

All over the years, several authors suggested their own sequence based on experimental

studies:
Author Sequence
Donald Shell (1959) L N/2*)
Donald Knuth (1969) 3*-1)/2
Robert Sedgewick (1986) 441+ 325+ 1
Marcin Ciura (2001) 1, 4,10, 23,57, 132, 301, 701, | hy.;-5/2)+1

Write a parallel program that uses a Shellsort algorithm to sort keys.

Input

The input file contains only one test case. The first line contains the total number of
keys (V) to be sorted (1 < N < 10'%). The following lines contain N keys, each key in a
separate line. A key is a seven-character string made up of printable characters (0x21 to
0x7E — ASCII) not including the space character (0x20 ASCII).

The input must be read from a file named shellsort.in

Output
The output file contains the sorted keys. Each key must be in a separate line.

The output must be written to a file named shellsort.out

Example

Input Output for the input
11 1234567
SINAPAD CTDeWIC
SbacPad LADGRID
Wscadll MPP2011
Sinapad SINAPAD
1234567 SINApad
LADGRID SbacPad
WEAC-11 Sinapad
CTDeWIC WEAC-11
sinaPAD Wscadll
MPP2011 sinaPAD
SINApad

6" Marathon of Parallel Programming — SBAC-PAD 2011

void shell_sort_pass(char *a, int length, long int size, int interval)
ﬁ - -
int i;
for (i =0; i < size; i++) {
/* Insert a[i] into the sorted sublist */
int j;
char v[length];

strcpy(v, a + 1 * length);

for (= i1 - interval; j >= 0; j -= interval) {
if (strcmp(a + j * length, v) <= 0)
break;
strecpy(a + (+ interval) * length, a + j *
length);
¥
strcpy(a + (J + interval) * length, v);
3
3

void shell_sort(char *a, int length, long int size) {
int ciura_intervals[] = { 701, 301, 132, 57, 23, 10, 4, 1 };
double extend_ciura_multiplier = 2.3;

int interval_idx = 0;
int interval = ciura_intervals[0];
it (size > interval) {
while (size > interval) {
interval_idx--;
interval = (int) (interval *
extend_ciura_multiplier);
}
} else {
while (size < interval) {
interval _idx++;
interval = ciura_intervals[interval_idx];

}

while (interval > 1) {
interval_idx++;
if (interval_idx >= 0) {
interval = ciura_intervals[interval_idx];

} else {

interval = (int) (interval /
extend_ciura_multiplier);

}

shell_sort_pass(a, length, size, interval);

6" Marathon of Parallel Programming — SBAC-PAD 2011 4

Problem B

Leibniz’s nt
There is many ways to calculate the . In 1682, Gregory—Leibniz proposed a simple
formula to calculate it:
o0 (_1)7!
=4y ——
,,Z:;‘ 2n+1
This formula is based on a Taylor series, considering that arccot(1)= n/4:

arccot(l)=) —————————=—
,,Z::; Q2n+1)-1%"Y 4
Since m number has infinite decimal places, computational implementation reduces it to
only some “trillion” places.

Write a parallel program that computes the & number.

Input
The input contains only one test case. The first line contains two integers: the number of
terms in the series (/ < N < /000) and the amount of decimal places (/ <D < 21024,

The input must be read from a file named pi.in

Output

The output contains only one line printing the © number with exact D decimal places.

The output must be written to a file named pi.out

Example
Input Output for the input
80 100 3.15393786227261562505005867974

9143054337773350263818526123194
5380388686496965829818612584875
322139720

6" Marathon of Parallel Programming — SBAC-PAD 2011

void pi(char* output, const long int n, const long int d) {
long int digits[d + 11];;
long int digit, i;
int signal;
long unsigned int remainder, div, mod;

for(digit=0;digit<d+11;++digit) {
digits[digit]=0;
}

signal = 1;
for(i=0;i<=n;++i) {
remainder = 4;
for(digit=0;digit<d+ll&&remainder;++digit) {
div=remainder/(2*i+1);
mod=remainder®%(2*i+1);
digits[digit]+=(signal*div);
remainder=mod*10;
¥
signal *= -1;

}

for(i=d+11-1;i>0;--1) {
digits[i-1]+=digits[i]/10;
digits[i]%=10;
if(digits[i]<0) {
digits[i-1]--;
digits[i]+=10;

}

if(digits[d+1]>=5) {
++digits[d];
}

for(i=d;i>0;--1) {
digits[i-1]+=digits[i]/10;
digits[i]%=10;

}

output[0] = digits[0]+"0";
output[l]= ".";
for(i=1;i<=d;i++)
output[i+1] = digits[i]+°0";

output[d+2]=0;

6" Marathon of Parallel Programming — SBAC-PAD 2011 6

Problem C
Mandelbrot

There is an interesting way to picture a set of points from a complex equation. Usually,
its name is fractal. Professor Benoit Mandelbrot was the first person who used a
computer to plot images and saw a visualization of the set in 1979, as shown on Figure

C.1.

* koK

* kK

ko ok otk ook ook otk ook
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxx
xxxxx
xxxxxx

Figure C.1 — The first picture of the Mandelbrot set.

Write a parallel program that plot a Mandelbrot set.

Input

The input contains only one test case. The first line contains two integers: the width and
the height of the image (I < W, H < 2"°-1). The next line contains the radius from the
center of the fractal (0 < R < 2). The last line contains one complex number
representing the center of the fractal image — a complex number consists of a real part
and an imaginary part (-3 <4,B <3).

The input must be read from a file named mandelbrot.in

Output

The output contains a WxH fractal image in text format.

The output must be written to a file named mandelbrot.out

6" Marathon of Parallel Programming — SBAC-PAD 2011

void mandelbrot::create() {
it (lupdate)
return;

img = new char[width * height];;

float minWH = width < height ? width : height;
float scale = 2.0 * radius / minWH;

float low_x = center.real() - width * scale /7 2.0;
float low_y = center.imag() - height * scale / 2.0;

int d = 1;
while (d < width |] d < height)
d <<= 1;
do {
for (int i = 0; i < width; i +=4d) {
for (int j = 0; j < height; j +=d) {
if @ % d<<1)==08&% J % (d<< 1) ==

&& (i =0 |] 3 '=0)
continue;
char newColor = valueAt(low_x + i1 *
scale, low_y + j * scale);
if (*(img + (i * height) + j) ==
|1 newColor != *(Cimg + (i *
height) + j)) {
fill(i, height - j - d, d, d,
newColor);

for (int s = 0; s < d; ++s)
if (i + s < width)
for (int €t = 0; €t <
d; ++t)
ifg+tc<
height)

*(img + (height * (i + s)) + j + ©) =
newColor; //c[i + s][j + t] = newColor;
3
¥
¥
d /= 2;
} while (d > 0);

update = false;

6" Marathon of Parallel Programming — SBAC-PAD 2011 8

Problem D

Permutation Flowshop Scheduling

Permutation Flowshop Scheduling (PFS) have as goal the deployment of an optimal
schedule for NV jobs on M machines. It is a NP-hard problem: N/ possibilities.

Each n; job (I <i <N) must be schedule, in any time, on a m; machine (/ <j <M). That
is because a job has M operations and its /” operation must be processed in m; machine.
So, one job can start on m; machine if its m;.; operation is completed and m; machine is
free. Each operation has its own time (#)).

For PFS the operating sequence of the jobs are the same on every machine. That is the
input job queue must be the same for all machines.

Solving the PFS problem means determining the permutation which gives the smallest
makespan value to schedule N jobs on M machine.

For example, Table D.1 shows three jobs and their operation time for each machine.

Table D.1 — Operation time for each job.

Operation (¢)) job 1 job 2 job 3
1 1 2 1
2 1 1 1
3 1 1 2
4 1 1 1

Figure D.1 shows a way to schedule these three jobs in four machines.

A

>
Execution time

Figure D.1 — PFS problem for 3 jobs in 4 machines.

Write a parallel program that finds the smallest makespan for the PFS problem.

6" Marathon of Parallel Programming — SBAC-PAD 2011 9

Input

The input contains several test cases. Each test case begins with two integers: the
number of jobs (0 < N < 100) and the number of machines (0 < M < 20). The next N
lines describe the n; jobs. Each line has M integers separated by blank spaces. These
numbers represent the ¢ time that the m; machine needs to process the ;™ operation of
the n; job (0 < t; < 1000). The test cases end with N = 0 and M = 0.

The input must be read from a file named pfs.in

Output

For each test case, the program must output an integer representing the smallest
makespan for the PFS problem.
The output must be written to a file named pfs.out

Example

5
S

=

-+

Output for the input

ORNRPWRREPNRPR
ORRPRPRARPPRPWRN

10

int main(int argc, char* argv[]) { >= tasks[machines[i]]-i[i]) {
.- // free a machine

6" Marathon of Parallel Programming — SBAC-PAD 2011

// generate first sequence
for (i = 0; 1 < n; i++)
seq[i] = i;

while (1) { tasks[machines[i]]-mag++;
memset(tasks, 0, sizeof(tasks)); if (tasks[machines[i]].-mag >= m)
cont_n++;

fscanf(in, "%d%d, &n, &m); machines[i] = -1;
if(=0]] m==0) ¥

break; 3}
for (i =0; 1 <n; i++) { }

for (J = 0; J < m; j++) makespan++;

fscanf(in, "%d", &tasks[il-i[j]1); }
3
min_makespan = 0; // calculate makespan
iT (Imin_makespan || makespan < min_makespan)

min_makespan = makespan;

// generate another sequence
cont_n = 1;

do { while (cont_n) {
for (i = 0; 1 < m; 0i++) i=n-1;
machines[i] = -1; seq[i]++;
makespan = 0; while (seq[i] >=n) {

for (i =0; 1 <n; i++) {
memset(tasks[i].exec, 0, sizeof(tasks[i].exec));
tasks[i]-maq = O;

for (= 1; J < n; j++)
seqlj] = 0;
if ((-1 >=0)

} seq[--1]++;
}
cont_n = 0; cont_n = 0;
for (i = 0; 1 < n && lcont_n; i++)
// simulate permutation flow job schedule for g =1 +1; jJ <n && lcont_n; j++)
while (cont_n < n) { ifT (seq[il == seqi])
cont_n = 1;
// schedule each task on a machine }
for (i = cont_n; i < n; i++) { cont_n = 1;

if (machines[tasks[seq[i]]-maq] < 0) {
machines[tasks[seq[i]]-maq] = seq[i];
}

}

//run task
for (i = 0; 1 <m; i++) {
if (machines[i] >= 0) {
tasks[machines[i]]-exec[i]++;
iT (tasks[machines[i]]-exec[i]

}

for (i = 0; 1 <n - 1&& cont_n; i++)
if (seq[i] > seq[i + 1])
cont_n = 0;
if (cont_n)
break;
3} while (1);
fprintf(out, "%d\n*, min_makespan);
Tflush(out);

6" Marathon of Parallel Programming — SBAC-PAD 2011 11

Problem E

Minimum Spanning Tree'

A tree is a connect graph that contains no circle. The spanning tree of a connect graph is
a subgraph that contains all the nodes of the original graph and a subset of just enough
edges to constitute a tree.

The Minimum Spanning Tree (MST) is a spanning tree that has the minimal sum of all
edge weight. The Prim’s algorithm finds the MST in N* time, where N is the number of
vertices in a graph.

Write a parallel program that finds the MST of an undirected graph.

Input

The input contains only one test case. The first line contains one integer that represents
the number of vertices in the graph (I < N < 2). The next N lines represent each i
vertices. Each line contains N integers representing the weight between i and j
(0<w;; < 2/9_-1) — 0 means that there is no connection.

The input must be read from a file named mst.in

Output

The output show an adjacent list of the MST, sorted in ascending order.

The output must be written to a file named mst.out

Example

Input Output for the input
5 0 ->3
00035 3->1,2,4
00070

00020

37201

50010

! The Art of Concurrency. Clay Breshears.O’Reilly, 2009.

12

6" Marathon of Parallel Programming — SBAC-PAD 2011

void prim(float **W, int **T, int N) {
int i, j, k = 0;
int *nearNode = (int*) calloc(N, sizeof(int));
float *minDist = (float*) calloc(N, sizeof(float));
float min;

for (i = 1; i < N; i++) {
nearNode[i] = O;
minDist[i] = WLi][0];

3
for (i =0; 1 <N-1; i++) {
min = FLT_MAX;

for G =15 j < N; j++) {
if (0 <= minDist[j] && minDist[j] < min) {
min = minDist[j];
k=7];
3
}
TLi]1[0] = nearNode[k];
TLII[1] = k;

minDist[k] = -1;
for G =1; j <N; j+9) {
iT (WOILK] < minDistj]) {
minDist[j] = WJJ1IK];
nearNode[j] = k;
}
}
3

free(nearNode);
free(minDist);
3

int main(int argc, char *argv[]) {

FILE *in, *out;
int N;

float **M;

int **T;

int i, j, k, f;

in = fopen(mst.in", "r');
out = fopen(“mst.out™, "w");

fscanf(in, "%d", &N);

M = calloc(N, sizeof(float*));
for (i = 0; 1 < N; i++) {
M[i] = calloc(N, sizeof(float));
for (G =0; §J <N; j+t) {
fscanf(in, "%f", &MLI101);
it (ML[i1L0] == 0)
MLEi1[] = FLT_MAX;
3
}
T = calloc(N, sizeof(int*));
for (i = 0; 1 <N; i++) {
T[i] = calloc(2, sizeof(int));
3

prim(M, T, N);

f =0;
for G =0; j <N; j+) {
for (k = 0; k <N - 1; k++) {
if (TEKJ[O] == 1 && TLIKI[1] == J) {
if (F==0) {
fprintf(out, "%d -> %d", T[KI[0], TLIKI[1D);
F++;
} else
fprintf(out, ",%d", T[KI[11);
3
3
}
if (F)
fprintf(out, "\n");
3
fflush(out);
for (i = 0; i <N; i++) {
free(M[i]):;
free(T[i]);

3
free(M); free(T);
fclose(in); fclose(out);

return EXIT_SUCCESS;

