
6th Marathon of Parallel Programming

SBAC-PAD’11
October 26th, 2011.

Warmup Rules

For all problems, read carefully the input and output session. For all problems, a

sequential implementation is given, and it is against the output of those implementations

that the output of your programs will be compared to decide if your implementation is

correct. You can modify the program in any way you see fit, except when the problem

description states otherwise. You must upload a compressed file with your source code,

the Makefile and an execution script. The program to execute should have the name of

the problem. You can submit as many solutions to a problem as you want. Only the last

submission will be considered. The Makefile must have the rule all, which will be used

to compile your source code before submit. The execution script must follow the

Cluster Enterprise3 submitting rules – it will be inspected not to corrupt the target

machine.

All teams have access to the target machine during the marathon. Your execution is

queued by the Sun Grid Engine (SGE) and does not have concurrent process. During the

marathon, SGE will be examined to find any suspect execution.

The execution time of your program will be measured running it with time program and

taking the real CPU time given. Each program will be executed at least twice with the

same input and only the smaller time will be taken into account. The sequential program

given will be measured the same way. You will earn points in each problem,

corresponding to the division of the sequential time by the time of your program

(speedup). The team with the most points at the end of the marathon will be declared the

winner.

This problem set contains 1 problem; pages are numbered from 1 to 2.

6th Marathon of Parallel Programming – SBAC-PAD’2011 - Warmup 1

Problem A
Fibonacci numbers

Fibonacci numbers is a well-kwon sequence of numbers that follows the recurrence

relation Fn = Fn-1 + Fn-2, with seeds values F0=0 and F1=1.

The Fibonacci numbers are used in many researches such as mathematics, computer

science and physics. Besides, it can be found in nature too, such as branching in trees,

arrangement of leaves on a stem, the fruitlets of a pineapple among others.

Write a program that calculates the Fibonacci sequence.

Input
The input contains only one test case. The first line contains only one number (N) that

will be used to search the Fn number on the Fibonacci sequence (0 ≤ N ≤ 105).

The input must be read from standard input.

Output
For the input test case, your program will output one line containing the number of the

Fibonacci sequence.

The output must be written to standard output.

Example 1
Input

11

Output for the input

89

Example 2
Input

20

Output for the input

6765

6th Marathon of Parallel Programming – SBAC-PAD’2011 - Warmup 2

#

d
e

f
i

n
e

M
A
X

1
0
0
0
1
0

#
d

e
f

i
n

e

L
E
N

2
5
0
0
1

 c
h

a
r

s
e
q
[
M
A
X
]
[
L
E
N
]
;

 v
o

i
d

a
d

d
(

i
n

t

a
,

i
n

t

b
)

{

i

n
t

i
,

a
u
x
,

s
;

f

o
r

(
i

=

0
,

a
u
x

=

0
;

s
e
q
[
a
]
[
i
]

!
=

'
\
0
'

&
&

s
e
q
[
b
]
[
i
]

!
=

'
\
0
'
;

i
+
+
)

{

s

=

s
e
q
[
a
]
[
i
]

+

s
e
q
[
b
]
[
i
]

+

a
u
x

-

'
0
'

-

'
0
'
;

a
u
x

=

s

/

1
0
;

s
e
q
[
a

+

1
]
[
i
]

=

s

%

1
0

+

'
0
'
;

}

w

h
i

l
e

(
s
e
q
[
a
]
[
i
]

!
=

'
\
0
'
)

{

s

=

s
e
q
[
a
]
[
i
]

+

a
u
x

-

'
0
'
;

a
u
x

=

s

/

1
0
;

s
e
q
[
a

+

1
]
[
i
]

=

s

%

1
0

+

'
0
'
;

i
+
+
;

}

w

h
i

l
e

(
s
e
q
[
b
]
[
i
]

!
=

'
\
0
'
)

{

s

=

s
e
q
[
b
]
[
i
]

+

a
u
x

-

'
0
'
;

a
u
x

=

s

/

1
0
;

s
e
q
[
a

+

1
]
[
i
]

=

s

%

1
0

+

'
0
'
;

i
+
+
;

}

i

f

(
a
u
x

!
=

0
)

s
e
q
[
a

+

1
]
[
i
+
+
]

=

a
u
x

+

'
0
'
;

s
e
q
[
a

+

1
]
[
i
]

=

'
\
0
'
;

}

 i
n

t

m
a

i
n
(
)

{

i

n
t

n
,

i
,

l
e
n
;

s
e
q
[
0
]
[
0
]

=

'
0
'
;

s
e
q
[
0
]
[
1
]

=

'
\
0
'
;

s
e
q
[
1
]
[
0
]

=

'
1
'
;

s
e
q
[
1
]
[
1
]

=

'
\
0
'
;

f

o
r

(
i

=

2
;

i

<

M
A
X
;

i
+
+
)

a
d
d
(
i

-

1
,

i

-

2
)
;

s

c
a

n
f
(
"
%
d
"
,

&
n
)
;

l
e
n

=

s
t

r
l

e
n
(
s
e
q
[
n
]
)
;

f

o
r

(
i

=

0
;

i

<
=

l
e
n

-

1
;

i
+
+
)

p
r

i
n

t
f
(
"
%
c
"
,

s
e
q
[
n
]
[
l
e
n

-

1

-

i
]
)
;

p

r
i

n
t

f
(
"
\
n
"
)
;

f

f
l

u
s

h
(
s
t
d
o
u
t
)
;

r

e
t

u
r

n

E
X
I
T
_
S
U
C
C
E
S
S
;

}

