8th Marathon of Parallel Programming
WSCAD-SSC/SBAC-PAD-2013

October 24", 2013,

Rules

For all problems, read carefully the input and output session. For all problems, a
sequential implementation is given, and it is against the output of those implementations
that the output of your programs will be compared to decide if your implementation is
correct. You can modify the program in any way you see fit, except when the problem
description states otherwise. You must upload a compressed file with your source code,
the Makefile and an execution script. The program to execute should have the name of
the problem. You can submit as many solutions to a problem as you want. Only the last
submission will be considered. The Makefile must have the rule all, which will be used
to compile your source code before submit. The execution script runs your solution the
way you design it — it will be inspected not to corrupt the target machine.

All teams have access to the target machine during the marathon. Your execution may
have concurrent process from other teams. Only the judges have access to a non-
concurrent cluster.

The execution time of your program will be measured running it with time program and
taking the real CPU time given. Each program will be executed at least twice with the
same input and only the smaller time will be taken into account. The sequential program
given will be measured the same way. You will earn points in each problem,
corresponding to the division of the sequential time by the time of your program
(speedup). The team with the most points at the end of the marathon will be declared the

winner.

This problem set contains 6 problems; pages are numbered from 1 to 19.

8" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013 1

Problem A

Longest Common Subsequence

A common subsequence of two given sequences may be informally defined as a series
of symbols in which all elements are contained in both sequences and appear in the
same order. For instance, both “ose” and “os” are common subsequences of “house”
and “browse”. A Longest Common Subsequence (LCS) of two sequences is a
subsequence that has maximum length. Finding a longest common subsequence of two
distinct sequences poses a very important challenge to various areas where computer
science is applied, namely genetics and speech recognition.
Given a sequence of symbols S=(ag, aa, ..., an), @ Subsequence S’ of S is obtained by
removing zero or more symbols from S. For example, given K=(a, b, c, d, e),
K’=(b, d, e) is a subsequence of K. A longest common subsequence of two sequences X
and Y is a subsequence of both X and Y with maximum length.
The length of a longest common subsequence, the Levenshtein distance, is a string
metric for measuring the difference between two sequences.
The length c[m, n] of a LCS of two sequences A=(ao, ai, ..., any and B=(bo, by, ..., by)
may be defined recursively in the following manner:

0 if i=0 or j=0,

cli,j]=1cfi-1j-1]+1 if i,j>0 and a =b,
maxicli -1, j].ci, j —1]} otherwise

From this definition, a dynamic programming algorithm can be derived directly.

Write a parallel program to calculate the size of the Longest Common Subsequence
between two sequences. Your solution must use dynamic programming to build a score

matrix (as in the provided sequential solution).

Input

The program must read two sequences from different files, containing letters and
numbers. The first file has the A sequence (fileA.in). The second file has the B sequence
(fileB.in).

The sequences must be read from the correct input files.

8" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013 2

Output

The program will print the size of the Longest Common Subsequence. You do not need
to print the score matrix at the end but the matrix must be built in memory ant it will be
used to verify solutions (use the provided debug function to print out the matrix during
development).

The output must be written to the standard output.

Example

fileA Input File

heagawghee

fileB Input File

pawheae

Output

5

8™ Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013

typedef unsigned short mtype;

mtype ** allocateScoreMatrix(int sizeA, int sizeB) {
int i;
//Allocate memory for LCS score matrix
mtype ** scoreMatrix = (mtype **) malloc((sizeB + 1) * sizeof(mtype *));
for (i = 0; 1 < (sizeB + 1); i++)
scoreMatrix[i] = (mtype *) malloc((sizeA + 1) * sizeof(mtype));
return scoreMatrix;

}

void initScoreMatrix(mtype ** scoreMatrix, int sizeA, int sizeB) {
int i, j;
//Fill first line of LCS score matrix with zeroes
for (j = 0; j < (sizeA + 1); j++)
scoreMatrix[0][j] = ©;

//Do the same for the first collumn
for (i = 1; 1 < (sizeB + 1); i++)
scoreMatrix[i][@] = ©;

}

int LCS(mtype ** scoreMatrix, int sizeA, int sizeB, char * segA, char *seqB) {
int i, j;
for (i = 1; 1 < sizeB + 1; i++) {
for (j = 1; j < sizeA + 1; j++) {
if (segA[j - 1] == seqB[i - 1]) {
/* if elements in both sequences match,
the corresponding score will be the score from
previous elements + 1*/
scoreMatrix[i][j] = scoreMatrix[i - 1][j - 1] + 1;
} else {
/* else, pick the maximum value (score) from left
and upper elements*/
scoreMatrix[i][j] =
max(scoreMatrix[i-1][j],
scoreMatrix[i][j-1]);

}
}
return scoreMatrix[sizeB][sizeA];
}
void freeScoreMatrix(mtype **scoreMatrix, int sizeB) {
int i;
for (i = 0; 1 < (sizeB + 1); i++)
free(scoreMatrix[i]);
free(scoreMatrix);

int main(int argc, char ** argv) {
// sequence pointers for both sequences
char *segA, *seqB;

// sizes of both sequences
int sizeA, sizeB;

//read both sequences
segA = read_seq("fileA.in");
segB = read_seq("fileB.in");

//find out sizes
sizeA = strlen(segA);
sizeB = strlen(segB);

// allocate LCS score matrix
mtype ** scoreMatrix = allocateScoreMatrix(sizeA, sizeB);

//initialize LCS score matrix
initScoreMatrix(scoreMatrix, sizeA, sizeB);

//fill up the rest of the matrix and return final score (element
locate at the last line and collumn)
mtype score = LCS(scoreMatrix, sizeA, sizeB, seqA, segB);

/* if you wish to see the entire score matrix,

for debug purposes, define DEBUGMATRIX. */
#ifdef DEBUGMATRIX

printMatrix(seqA, seqB, scoreMatrix, sizeA, sizeB);
t#tendif

//print score
printf("Score: %d\n", score);

//free score matrix
freeScoreMatrix(scoreMatrix, sizeB);

return EXIT_SUCCESS;

8" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013 4

Problem B

Blum Blum Shub Random Number Generator

Repeatable sequences of random numbers are useful in debugging and to provide
reproducibility to experiments. They are also important to guarantee consistency in
executions of randomized algorithms, such as Monte Carlo computations. Those
sequences are usually provided to programmers in the form of “generators”, a stream
that provides a random number upon each request.
A random number generator provides new numbers based on its current state. The initial
state is given by a seed value. A generator f generates ith random number at the ith
request in function of the (i — 1)th state, which is updated to the ith state, used in the
same fashion by later requests.
The Blum Blum Shub random number generator was proposed in 1986 by Leonel
Blum, Manuel Blum and Michael Shub. It is advised to be used in cryptography, but not
in simulations, because the required modulus operations are slow. In what follows, its
seed is denoted by Xo. Number x;, the ith number on the sequence, is obtained by
performing:

Xi = (Xi.1)? mod M
where M = pq is the product of two primes. It is possible to generate the ith number

(thus setting generator to the ith state) directly from the seed by Euler's Theorem:

X, = (xgi mOM(“"))mod M
where (M) = lecm((p - 1), (q - 1)), function Icm returning the least common multiplier
between two integers.

You should write a program that generates in parallel the N first random numbers of a

seeded Blum Blum Shub generator.

Input
Itis a line in the form:
<seed> <p> <g> <N>
Where <seed> is the initial state value xo, numbers <p> and <g> are the primes used to

calculate M and <N> is amount of random numbers that shall be generated by the Blum

8" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013

Blum Shub generator from Xo.

The input must be read from the standard input.

Output

It contains just one line, with all generated numbers separated by space.

The output must be written to the standard output.

Example

Input Output for the input

311 19 9 9 81 82 36 42 92 104 157 196

8™ Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013

// Calculates Greatest Commom Divisor.
template <typename T>

// T models integer

T ged (T x, Ty)

{
while (true) {
if (x == T (0)) return y ;
y %=X ;
if (y == T (0)) return x ;
X %=y ;
}
}

// Calculates Least Commom Multiple.
// uses eq: lcm (x, y) * gcd (X, y) == xy
template <typename T>
Tlem (T x, Ty)
{

T tmp (ged (x, y)) ;

return tmp ? (x *y / tmp) : T (0) ;
}
// Implementation of Blum Blum
// Reference:
// Blum, Lenore; Blum, Manuel; Shub, Mike (1 May 1986).
// "A Simple Unpredictable Pseudo-Random Number Generator".
// SIAM Journal on Computing 15 (2): 3643€“383.
class BlumBlumShub {

Shub generator for integers.

size_t seed, p, q, X ;

// Sets state.
inline
void set_state (size_t seed, size_t p, size_t q)
{
this->seed = seed ;
this->p = p ;
this->q = q ;
this->x = seed ;
}
public:

// constructor
BlumBlumShub (size_t seed, size_t p, size_t q)

{
}

set_state (seed, p, q)

..

// default constructor
// this small seed and prime factors generate large cycles
BlumBlumShub ()

{
}

set_state (size_t (3), size_t (11), size_t (19)) ;

// copy-constructor
BlumBlumShub (const BlumBlumShub& g)
{

}

set_state (g.seed, g.p, £.9) ;

// assignment operator
BlumBlumShub& operator= (const BlumBlumShub& g)
{

if (this != &g) new (this) BlumBlumShub (g) ;
1mn:1:*n:wmh

}

// Generates next random number and updates state.
size_t operator() (void)
{

x=(x*x)%(p*aq);

return x ;

}

// May be useful to jump to a desired distance...
// (uses Euler's Theorem)
size_t operator() (const size t i)
{
size_t e (pow (2, 1)) ;
e %=1lcm (p - 1, q - 1) ;
x = size_t (pow (seed, e)) ;
X%=p*q;
return x ;

Y

// Fills range [i,j) with random numbers generated by f.
template <typename R>

// R models generator function

void generate (R& f, size t* i, size_t* j)

{
}

for (;

=35 e d) = O

8™ Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013

Problem C
The Knight’s Tour Problem

The Knight’s Tour Problem is a classical mathematical problem which dates back to the

9™ century.

In the chess game, a knight (@) may only make moves which simultaneously shift one

square along one axis and two along the other (as illustrated in Figure Cla). A knight’s

tour on a chessboard (or any other grid of any size) is a sequence of moves by a knight

such that each square of the board is visited exactly once.

Write a parallel program that finds a knight’s tour starting at a given position, in a

square grid of size s x s.

7
8 % //// 1 8 b 59
- 7 7 7 7 % 61
0 %/4 o //A/ ¢ 2, / 6 / 45
s e e 5 i 6 13
//A% ", A% ///A% /,% /A _ 7 /A% /A%
4 %/4 ,,] / 4|7 20 33 ,/ 20 26 40 44
3 8 7 e 3164 30 40 21 45 63 43 25
2 / o / [J / 2 (21 / 41 23 43
1 . %é o 1 % 35 o 4 51 74 11
a b ¢ d e f g h a b ¢ d e f g h
(a) Possible moves of a knight. (b) A possible knight's tour with its 3 first

steps highlighted.

Figure C1. One of the possible knight’s tours starting at position d4.

Input

The input contains only one test case. The first (and only) line contains three integers:

the size s > 5 of the side of the square, and a pair of coordinates x and y with the initial

position of the knight. To simplify, assume that each axis is numbered from 0 up to s-1.

The input must be read from the standard input.

8™ Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013 8

Output

The output must be an s x s table, where each cell contains the number of knight
movements to reach it.

The output must be written to the standard output.

Example
Input Output for the input
500 0 13 18 7 24

5 8 1 12 17
14 19 6 23 2
9 4 21 16 11
20 15 10 3 22

8" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013

const int move[8][2]={1,2, 2,1, 2,-1, 1,-2, -1,-2, -2,-1, -2,1, -1,2};

class tour {
vector< vector< int > > board;
int sx, sy, size;

public:
bool findtour(tour& , int);

// Constructor
tour(int s = 5, int startx = 0, int starty = 0)
:sx(startx), sy(starty), size(s)

{
// Get the board to size x size
board.resize(size);
for(int 1 = 0; i < size; ++i)
board[i].resize(size);
// Fill the board with -1s
for(int i = 0; i < size; ++i)
for(int j = @; j < size; ++j)
board[i][j] = -1;
// Move ©
board[sx][sy] = ©;
// Solve the problem
if(!findtour(*this, 0))
cout << "No solutions found\n";
}

// Copy constructor
tour(const tour& T): sx(T.sx), sy(T.sy), size(T.size) {
this->board.resize(size);
for(int i = 0; i < size; ++i)
board[i].resize(size);

// Copy the board
for(int i = 0; i < size; ++i)
for(int j = 0; j < size; ++j)
board[i][j] = T.board[i][j];

// Function to output class to ostream
friend std::ostream& operator<<
(std::ostream& os, const tour& T);

std::ostream& operator<<(std::ostream& os, const tour& T) {
int size = T.size;

for(int i = 0; i < size; ++i) {

for(int j = @0; j < size; ++j)
os << setw(2) << T.board[i][]j] << " ";
0s << endl;
}
return os;

}

// A recursive function to find the knight tour.
bool tour::findtour(tour& T, int imove) {
if(imove == (size*size - 1)) return true;

// make a move
int cx = T.sx;
int cy = T.sy;
int ¢s = T.size;

for (int i = 0; i < 8; ++i) {
int tcx = cx + move[i][@];
int tcy = cy + move[i][1];
if (
// Is this a valid move?
(tcx >= 0) && (tcy >= 0) && (tcx < cs) & (tcy < cs)
// Has this place been visited yet?
(T.board[tcx][tcy] == -1)
) A
tour temp(T);
temp.board[tcx][tcy] = imove+l;
temp.sx = tcx;
temp.sy = tcy;
if(findtour(temp, imove+l)) {
cout << temp << endl;
exit(0);
}
}
}

return false;

}

&&

8™ Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013 10

Problem D

Selection

The problem consists in selecting the k™-largest element from an unsorted list. One
obvious solution is to first sort the elements of the list and then pick out the k™ position.
If you need to put out different k™ items multiple times, it might be worthwhile to do the
sorting. If, however, you only need to this once, or if the list is updated between
selections, you can use an algorithm with a better asymptotic complexity than sorting,

namely O(n).

The proposed Selection algorithm to accomplish this task recursively divides the
original list in such a way that the search only occurs in subsequences. The central point
of this algorithm is in finding the median of a list (the item in the middle). The recursive

serial algorithm for selection can be described with five steps:

1. If the size of the data set to be used is less than some constant small size, Q, sort the
data and return the k™ element; otherwise, subdivide the data set into chunks of size
Q and whatever is left over.

2. Sort each chunk and find the median of the medians found in the previous step,
creating a new array of medians.

3. Recursively call the selection routine to find the median of the medians in the array
of medians found in the previous step.

4. Partition the original data set into three subsequences: those whose elements are less
than the median of medians, those that are equal to the median of medians and those
that are greater than the median of medians.

5. Determine which subsequence contains the k™ element, from the sizes of the three
subsequences, and recursively call the selection routine on that subsequence. If the
k™ element is not in the subsequence of smaller or larger items, it must be in the
subsequence equal to the median of medians, so just return the medians of medians

value.

According to some authors, the value of Q can be any integer greater than or equal to 5.

In the example below this value is set to 5. In the example, S is an array of integers of

8" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013 11

size N.

There are four support functions in the algorithm:

SortSelect5(): sorts each chunk of Q = 5 elements and returns the median of the
sorted data (not shown).

SortLessThanQ(): if there is a leftover chunk of less than Q elements (lastNum), the
median of this chunk is found by calling this function (not shown).
CountAndMark(): takes an array of data to be partitioned (S), the array that will
hold the notation of which partition the corresponding element from S will be
assigned (Marks), the number of elements in the first two parameters arrays (num),
the value of the median that determines the three partitions (median), and the leg
array to hold the counts of the number of elements that are less than, equal to, or
greater than median.

ArrayPack(): takes a list of elements (S) and an array of items, noting which
partition the element from S should be assigned (Marks). Everywhere the Marks
element and the scanSym match, the corresponding element of S is packed into
sPack (tip: is possible to do this operation with a prefix scan of the Marks array).

Input

The input contains only one test case. The first line contains two integers that

correspond respectively to k (the position to be selected) and N (the size of the list). The

next lines contain the numbers of the unsorted list, one number in each line. Your

program must accept lists up to 500,000,000 of integer elements.

The input must be read from the standard input.

Output

The output contains the k™-largest element from the unsorted list.

The output must be written to the standard output.

8" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013

Example

Input

=
(@]

U O ~J b oYy O WowEFE N

Output for the input

5

13

8" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013

int SortLessThanQ(int
{

S[1, int num, int k)

switch (num)

{

}

case 1:

return S[@]; break;
case 2:

return SortSelect2(S, k); break;
case 3:

return SortSelect3(S, k); break;
case 4:

return SortSelect4(S, k); break;
case 5:

return SortSelect5(S, k); break;
default:

printf("SortLessThanQ Error: num not in [1..4] num = %d\n",num);
return -1;

int SequentialSelect(int *S, int num, int k)

{
if (num <=
int cNum =

Q) return SortLessThanQ(S, num, k);
num/Q + 1;

int *Medians = new int[cNum];

int i = o;
for (int j

}

=0; j < num/Q; j++) {
Medians[j] = SortSelect5(&S[i], 3); // find medians of subsequences
i+=0Q;

int lastNum = num - (Q * (num / Q));
if (lastNum) {

}

int lastQ = Q * (num / Q);
Medians[cNum-1] = SortLessThanQ(&S[lastQ], lastNum, (lastNum+1)/2);

else cNum--;
int M = SequentialSelect(Medians, cNum, (cNum+1)/2);
delete Medians;

int leg[3]
int *marksS

= {e,0,0};
= new int[num];

CountAndMark(S, markS, num, M, leg);

if (leg[o]

>= k) {

int *sPack = new int[leg[0]];
ArrayPack(S, sPack, num, markS, @);
delete marksS;

M = SequentialSelect(sPack, leg[@], k);
delete sPack;

return M;

} else if ((leg[@] + leg[1]) >= k) {

} else {

delete markS;
return M;

int *sPack = new int[leg[2]];

ArrayPack(S, sPack, num, markS, 2);

delete marksS;

M = SequentialSelect(sPack, leg[2], k-(leg[@]+leg[1]));
delete sPack;

return M;

}
#define swap(A,B) {int t; t = A; A =B; B = t;}

int SortSelect2 (int S[], int k)

{
if (s[e] > s[1]) swap(s[e], S[1]);
if (k == 1) return S[0];
else return S[1];

}

int SortSelect3 (int S[], int k)

{
if (s[e] > s[1]) swap(s[e], S[1])
if (S[1] > s[2]) swap(S[1], S[2])
if (s[e] > s[1]) swap(s[e], S[1])
return S[k-1];

}

int SortSelect4 (int S[], int k)

{
if (s[e] > s[1]) swap(s[e], S[1]);
if (S[1] > s[2]) swap(S[1], S[2]);
if (s[e] > s[1]) swap(S[e], S[1]);
if (S[2] > s[3]) swap(S[2], S[3]);
if (S[1] > s[2]) swap(S[1], S[2]);
if (s[e] > s[1]) swap(s[e], S[1]);
return S[k-1];

}

int SortSelect5 (int S[], int k)

{
if (s[e] > s[1]) swap(s[e], S[1])

(S[1] > s[2]) swap(S[1], S[2])

(s[e] > s[1]) swap(s[e], S[1])

£ (S[2] > S[3]) swap(S[2], S[3])

if (S[1] > s[2]) swap(S[1], S[2])

if (s[e] > s[1]) swap(s[e], S[1])

if (S[3] > s[4]) swap(S[3], S[4])
if (S[2] > sS[3]) swap(S[2], S[3])
if (S[1] > s[2]) swap(S[1], S[2])
if (s[e] > s[1]) swap(s[e], S[1])
return S[k-1];

}

void CountAndMark(int S[], int Marks[], int num, int median, int leg[3])

{

for (int i = @; i < num; i++) {

if (S[i] == median) {Marks[i] = 1; leg[1]++;}
else if (S[i] < median) {Marks[i] = @; leg[@]++;}
else {Marks[i] = 2; leg[2]++;}

void ArrayPack(int S[], int sPack[], int num, int Marks[], int scanSym)
{
int i, j=0;
for (i = @; i < num; i++)
if (Marks[i] == scanSym) sPack[j++] = S[i];

8" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013 14

Problem E
Black-Scholes?

A European call option gives its holder the opportunity to purchase from the writer an
asset at an agreed expiry time T at an agreed exercise price E. Given a time t, we will let
S(t) denote the asset value at time t, so S(T) is the value of the asset at the expiry time.
The final payoff to the purchaser is max{S(T) — E, 0}, because

e if S(T) > E, the option will be exercised for a profit of S(T) — E, whereas

e if S(T) <E, the option will not be exercised.

In 1973, Robert C. Merton published a paper presenting a mathematical model which
can be used to calculate a rational price for trading options. In that same year, options
were first traded in the open market. Since then, the demand for option contracts has
grown to the point that trading options typically far outstrips that for the underlying
assets. Merton’s work expanded on that of two other researchers, Fischer Black and
Myron Scholes, and the pricing model became known as the Black-Scholes model. The
model depends on a constant ¢ representing how volatile the market is for the given
asset, as well as the continuously compounded interest rate r.

Write a parallel version? of this problem that uses the Monte Carlo technique to

calculate the Black-Scholes pricing model to a set of assets.

Input
The input contains only one test case. The first line contains only one integer: the
number of assets N (1 <N < 32.768).

The input must be read from the standard input.

Output
The output contains the asset price, each one in separate line.

The output must be written to the standard output.

! Homework 1: A Parallel Monte Carlo Simulation for Black-Scholes Option Valuation. URL:
http://www.cs.berkeley.edu/~yelick/cs194f07/hw/hwl/ at May, 2013.
2 The serial version came from Intel® Development Forum — Brazil 2012.

http://www.cs.berkeley.edu/~yelick/cs194f07/hw/hw1/

8" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013

Example

15

Input

10

Output for the input

17.07
7.19
25.40
1.23
5.97
11.77
22.74
0.01
1.88
8.17

16

8™ Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013

#ifndef max

#define max(a,b) (((a) > (b)) ? (a) : (b))

#endif

const int RAND_N = 1 << 18;
static const float RISKFREE

static const float VOLATILITY

union FPARRAY {
float *SPData;
double *DPData;

template<class Basetype>

Basetype cdfnorminv(Basetype
const Basetype al
const Basetype a2
const Basetype a3
const Basetype a4
const Basetype bl
const Basetype b2
const Basetype b3
const Basetype b4
const Basetype cl
const Basetype c2
const Basetype c3
const Basetype c4
const Basetype c5
const Basetype c6
const Basetype c7
const Basetype c8
const Basetype c9
Basetype y, z;

®

06;
= 0.10;

P) {

2.50662823884;
-18.61500062529;
41.39119773534;
-25.44106049637 ;
-8.4735109309;
23.08336743743;
-21.06224101826;
3.13082909833;
0.337475482272615;
0.976169019091719;
0.160797971491821;
2.76438810333863E-02;
3.8405729373609E-03;
3.951896511919E-04;
3.21767881768E-05;
2.888167364E-07;
3.960315187E-07;

if (P <=0 || P>=1.0) {
printf("MoroInvCND(): bad parameter\n");

y =P - 0.5;

if (fabs(y) < 0.42) {
z=y*y;
z=y* (((a4 *z +a3) *z+ a2) *z+al) / ((((b4 * z +b3) * z +b2) *z+bl) *z+1);

} else {
if (y > 0)
z = log(-log(1.0 - P));
else
z = log(-1log(P));
z=cl+2z* (c2+2z* (c3+z* (cb+2z2* (c5+2*(c6+2z*(c7+2z%*(c8+2z*
)N
if (y < 0)
z = -2;
}
return z;
}

void MonteCarlo(float *h_CallResult, float *h_CallConfidence, float *S,

float *X, float *T, int OPT_N) {
float 1_Random[RAND_N];
for (int k = @; k < RAND_N; k++)
1_Random[k] = cdfnorminv<float>((k + 1.0) / (RAND_N + 1.0));

for (int opt = @; opt < OPT_N; opt++) {
float VBySqrtT = VOLATILITY * sqrt(T[opt]);
float MuByT = (RISKFREE - ©.5 * VOLATILITY * VOLATILITY) * T[opt];
float Sval = S[opt];
float Xval = X[opt];
float val = 0.0, val2 = 0.0;

for (int pos = @; pos < RAND_N; pos++) {
float callvalue = max(0.0, Sval *exp(MuByT + VBySqrtT *

1_Random[pos]) - Xval);

val += callvValue;
val2 += callvalue * callValue;

float exprt = expf(-RISKFREE * T[opt]);
h_CallResult[opt] = exprt * val / (float) RAND_N;
float stdDev = sqrtf(((float) RAND_N * val2 - val * val) / ((float) RAND_N *

(float) (RAND_N - 1)));

}

h_CallConfidence[opt] = (float) (exprt * 1.96 * stdDev / sqrtf((float) RAND_N));
} //end of for

int main(int argc, char* argv[]) {

FPARRAY CallResultParallel, CallConfidence, StockPrice, OptionStrike,
OptionYears;

int i, mem_size;

int OPT_N;

scanf("%d",&PT_N);

mem_size = sizeof(float) * OPT_N;

...; // malloc commands

for (1 = @; 1 < OPT_N; i++) {
CallResultParallel.SPData[i] = ©.0;
CallConfidence.SPData[i] = -1.0;
StockPrice.SPData[i] = RandFloat(5.0f, 50.0f);
OptionStrike.SPData[i] = RandFloat(10.ef, 25.0f);
OptionYears.SPData[i] = RandFloat(1.ef, 5.0f);

MonteCarlo(CallResultParallel.SPData, CallConfidence.SPData,
StockPrice.SPData, OptionStrike.SPData, OptionYears.SPData, OPT_N);

// results in CallResultParallel.SPData[i]

for (i = @; 1 < OPT_N; i++)
printf("%5.2f\n", CallResultParallel.SPData[i]);

...; // free commands
return 0;

8" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013 17

Problem F

Gauss

The solution of sets of linear equations has applications on electrical circuit analysis,
simulations of network traffic, simulations of neurons and in various other fields such as
chemistry, physics, biology, economics, engineering and social sciences. In this exercise
you must solve a system of linear equations given by Ax=b, where A={A11, A1z, ..., Ann}
Is a matrix of size n x n, and x={X1, Xz, ..., Xn} and b={by, b, ..., by}vectors of length n.
To solve a linear system, the program first runs the Gaussian elimination algorithm,
which transforms the matrix A into an upper triangular matrix. To this end, for each line
I, the algorithm transform in zero all elements from column i for the lines i+1 to n. This
is accomplished by summing each element from row i to each elements of each row j
below it, multiplied by the factor —A;i/Aji.

Once transformed into an upper triangular matrix, one can solve the linear system by
evaluating the value x, = bp/Ann. Then we can calculate x,.; and so on.

Your program should generate the linear system using the function
generateLinearSystem(int n, float *A, float *b, int nS), which generates nS matrices of
size n x n and a vector b, filled with n values 1. In addition, each solution found is tested
using the function testLinearSystem(float *A, float *b, float *x, int n, int nS), which

replaces the solutions x of each of the nS linear systems, checking if Ax=b.

Input

The input contains only one test case. The first line contains two integers: the size of
each linear system N and the number of linear systems to be solved nS, respectively
(N > 1.000; nS > 30)

The input must be read from the standard input.

8™ Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013 18

Output

The output shows the amount of errors found during the test phase for each line linear
system.

The output must be written to the standard output.

Example

Input Output for the input

1000 30 Errors=0

19

8" Marathon of Parallel Programming — WSCAD-SSC/SBAC-PAD-2013

int testLinearSystem(float *A, float *b, float *x, int n, int nS) {

int i, j;
for (1 =0; 1 < n; i++) {
float sum = 0;
for (j = 0; j < n; j++)
sum += A[i * n + j] * x[j];
if (abs(sum - b[i]) >= @.001) {
return 1;

}

return 9;

void generateLinearSystem(int n, float *A, float *b, int nS) {

int i, j;
for (i =0; 1 < n; i++) {
for (j = 0; j < n; j++)
A[i * n+ j] = (1.0 * n+ (rand() % n)) / (i + 3 +
1);
A[i * n+ i] = (10.0 *n) / (i + 1+ 1);
}
for (i = 0; i < n; i++)
b[i] = 1.;
¥

void solvelLinearSystem(const float *A, const float *b, float *x, int n) {

float *Acpy = (float *) malloc(n * n * sizeof(float));
float *bcpy = (float *) malloc(n * sizeof(float));
memcpy (Acpy, A, n * n * sizeof(float));

memcpy (bcpy, b, n * sizeof(float));

int i, j, count;
/* Gaussian Elimination */
for (1 =0; 1 < (n - 1); i++) {
for (J = (i +1); 3 <nj j++) {
float ratio = Acpy[j * n + i] / Acpy[i * n + i];
for (count = i; count < n; count++) {

count]);

}

Acpy[j * n + count] -= (ratio * Acpy[i * n +

}
bepy[j] -= (ratio * bcpy[i]);

/* Back-substitution */
x[n - 1] = bepy[n - 1] / Acpy[(n - 1) * n + n - 1];

for

(i

=(n-2); 1> 0; i--) {
float temp = bcpy[i];
for (j = (1 +1); j <n; j++) {
temp -= (Acpy[i * n + j] * x[]j]);
}

x[i] = temp / Acpy[i * n + i];

int main(int argc, char **argv) {

int n, nS;
scanf("%d %d", &n, &nS);

int i,
float
float
float
for (i
for (i
for (i

—.._H_.- 3\- —JMVW

nerros = 0;
*A = (float *) malloc(nS * n * n * sizeof(float));
*p = (float *) malloc(nS * n * sizeof(float));
*x = (float *) malloc(nS * n * sizeof(float));
=0; 1 < nS; i++)
generateLinearSystem(n, &A[i * n * n], &J[i * n], nS);
=0; 1 < nS; i++)
solveLinearSystem(&A[i * n * n], &J[i * n], &[i * n], n);
=0; i< nS; i++)

nerros += testlLinearSystem(&A[i * n * n], &[i * n], &x[i *

printf("Errors=%d\n", nerros);
return EXIT_SUCCESS;

