9th Marathon of Parallel Programming
WSCAD - 2014

October 9", 2014.

Rules

For all problems, read carefully the input and output session. For all problems, a
sequential implementation is given, and it is against the output of those implementations
that the output of your programs will be compared to decide if your implementation is
correct. You can modify the program in any way you see fit, except when the problem
description states otherwise. You must upload a compressed file with your source code,
the Makefile and an execution script. The program to execute should have the name of
the problem. You can submit as many solutions to a problem as you want. Only the last
submission will be considered. The Makefile must have the rule all, which will be used
to compile your source code before submit. The execution script runs your solution the
way you design it — it will be inspected not to corrupt the target machine.

All teams have access to the target machine during the marathon. Your execution may
have concurrent process from other teams. Only the judges have access to a non-
concurrent environment.

The execution time of your program will be measured running it with time program and
taking the real CPU time given. Each program will be executed at least twice with the
same input and only the smaller time will be taken into account. The sequential program
given will be measured the same way. You will earn points in each problem,
corresponding to the division of the sequential time by the time of your program
(speedup). The team with the most points at the end of the marathon will be declared the

winner.

This problem set contains 6 problems; pages are numbered from 1 to 19.

9™ Marathon of Parallel Programming — WSCAD — 2014 1

Problem A

The Energy Minimization Cooking Problem

There is a very famous restaurant known by its customer service called The Optimal. Its
Chef is known for being the fastest Chef in the world; so fast that he can actually run the
entire restaurant by itself, no matter how busy the restaurant is.

One of the features that made this restaurant famous is that the customer can choose
when to place the order and also choose when the order must be delivered, i.e., every
order that arrives has a deadline attached: the client wants his meal before a time that he
sets himself. There is one restriction, though: if a customer places his order after other
customers, his deadline must also be after than the ones before.

Obviously each dish has a certain degree of difficulty, that we will call the “volume”.
Since each order arrives at a certain time, have a certain degree of difficulty and also
have a deadline, the Chef must choose how fast he must be in order to respect all its
clients’ wishes.

The Chef gets tired when he works fast. The fastest he cooks, the more tired he gets.

If, at time t, he cooks at speed s, the “power” consumed by him can be expressed by the

function P(s(t)) = s(t)?, and the total energy of an entire night's work is defined as
E(S) = folP(s(t))dt. He quickly realized that in order to minimize his tiredness he

would need to minimize the total energy spent.

One day, reading his favorite publication, the Proceedings of the Symposium on
Foundations of Computer Science, he learned that the YDS algorithm®, developed to
optimize the energy consumption of a CPU, could be used by him to minimize the
energy spent by him. He would only need to know (beforehand) the list of all dishes that

will be ordered in one night.

Help the Chef find out the minimum amount of energy that he needs to cook all the
dishes, given that he knows everything beforehand.

! Frances Yao, Alan Demers, and Scott Shenker. “A scheduling model for reduced CPU energy”. In:
Proceedings of the Symposium on Foundations of Computer Science. Ed. by Allan Borodin and
Prabbakar Ragbavan. IEEE Computer Society, Oct. 1995, pp. 374-382. doi: 10.1109/SFCS.1995.492493

9™ Marathon of Parallel Programming — WSCAD — 2014 2

Input

The input consists of a single test that must be read from standard input. It starts with an
integer n, the number of orders. Then follows n lines that describes the orders. Each
order is fully described by 3 integers, r;, di and w; (0 < r;, di < 10%, 1 <w; < 10%), the time
in which the order arrives, the order’s “deadline” and the order’s “volume”.

The input must be read from the standard input.

Output

Output a single real number, the minimum energy required for the Chef to cook all the
dishes.

The output must be written to the standard output.

Example

Input Output for the input

14.8889

NN W
o1 N
w N -

Extra Information

Current dynamic voltage scaling techniques allow the speed of processors to be set
dynamically to save energy consumption. This allows the operating system to manage a
trade-off between performance and power (energy) consumption.

A theoretical study of speed scaling scheduling was initiated by Yao, Demers, and
Shenker. In their model, the power P, or energy consumed per unit time, is a convex

function of the processor speed s(t). The total energy consumed by a schedule S is
E(S) = folP(s(t))dt, with P(s(t)) = s(t)®. The goal of the min-energy scheduling
problem is to find, for any given job set J, a feasible schedule that minimizes E(S). It is

assumed the processor speed may be set at any real value.

9™ Marathon of Parallel Programming — WSCAD — 2014 3

The YDS algorithm is a simple, yet clever, algorithm that can optimally solve the
problem for the following scenario. Suppose that we have one CPU and we want to
compute the optimal speed of the processor for any given time. Also suppose that each
job j € J has a release time rj (meaning that the job cannot start before time t = r;), a
deadline d; (meaning that the job cannot end before time t = d; and that it must run for w;
CPU cycles.

The base of the YDS algorithm is the concept of critical interval for J, which is an
interval I in which a group of jobs must be scheduled at maximum, constant speed g(I)
in any optimal schedule for J. For any interval I, let J; denote the subset of all jobs in J

whose intervals are completely contained in I. Then g(i) = X ¢, wi/|I| is the

minimum speed needed to execute all jobs J; respecting their release dates and
deadlines. We call I” the maximum density interval, i.e., the interval achieving
maximum g(I) over all possible intervals I. The pseudo-code for the YDS algorithm is
presented next.

Data: job set .J
Result: optimal voltage schedule S for .J
repeat
Select I* = [z, 2] with ¢(I*) = max g([);
Sort jobs j; € .Jr- according to non-decreasing release dates;
Schedule j; € .J;« at g(I*) over I'* in sorted order;
J—J—J I3
foreach j;. € .J do
if dj, € [z, 2’| then
| d.;;_ — z
else if d;. > 2’ then
| dj —di — (2 — 2)
end
Reset release dates r; similarly;

end
until ./ is empty;

The algorithm interactively find the maximum density interval I of the set of
unscheduled jobs, and execute them in non-decreasing order of their release dates at
speed g(1); i.e., s(t) = g(I"), Vt e I". After that, the interval I” (and its jobs) is removed
and the release dates and deadlines of the remaining jobs intersecting (but not included
in) I” are updated.

9™ Marathon of Parallel Programming — WSCAD — 2014

#include<vector>
#include<set>
#include<iostream>
#include<cmath>
#define ALPHA 3
using namespace std;

struct job {
int r, d, w;
I
struct interval {
int r, d, time;
double dens;
mutable vector<job>jobs_inside;
bool operator<(const interval& inter) const {
if(r < inter.r) return true;
if(r == inter.r & d < inter.d) return true;
return false;

const double energy_consumption(const vector<interval>& sch){
double energy = 0.0;
for(size_t i = @; i < sch.size(); i++){
double dens = sch[i].dens;
int inter = sch[i].d - sch[i].r;
energy += pow(dens, ALPHA)*inter;
¥

return energy;

set<interval> build_intervals(const vector<job> &jobs){
set<interval> intervals;
for(size_t i = @; i < jobs.size(); i++){
for(size_t j = @; j < jobs.size(); j++){
if(jobs[i].r >= jobs[j].d) continue;
interval inter {jobs[i].r, jobs[i].d, jobs[i].d - jobs[i].r, @.@};
intervals.insert(inter);

}

return intervals;

interval find_maximum_density_interval(const vector<job>& jobs){
set<interval> intervals = build_intervals(jobs);

double max_dens = -1.0;
interval max_interval;
for(set<interval>::iterator it = intervals.begin(); it!= intervals.end(); ++it){

int inter_r = it->r, inter_d = it->d;
double dens = 0.0;
for(size_t i = @; i < jobs.size(); i++){
if(jobs[i].r >= inter_r &% jobs[i].d <= inter_d){
it->jobs_inside.push_back(jobs[i]);
dens += jobs[i].w;

}

dens /= it->time;

if(dens >= max_dens) {
max_dens = dens;
max_interval = *it;
max_interval.dens = dens;

}
}

return max_interval;

void remove_jobs_from_interval(vector<job>& jobs, const interval inter){
for(size_t i = @; i < jobs.size(); i++){
int inter_r = inter.r, inter_d = inter.d;
if(jobs[i].r >= inter_r && jobs[i].d <= inter_d){
jobs.erase(jobs.begin() + i);
i--5

void adjust_jobs_given_interval(vector<job>& jobs, const interval inter){
for(size_t i = @; i < jobs.size(); i++){
int inter_r = inter.r, inter_d = inter.d;
if(jobs[i].r >= inter_r && jobs[i].r <= inter_d && jobs[i].d >= inter_d){
jobs[i].r = inter_d;
} else if(jobs[i].r <= inter_r && jobs[i].d >= inter_r && jobs[i].d <= inter_d){
jobs[i].d = inter_r;

}

vector<interval> yds(vector<job>jobs){
vector<interval> schedule;
while(!jobs.empty()) {
// find maximum density interval
interval max_interval = find_maximum_density_interval(jobs);

// put max density interval on the schedule
schedule. push_back(max_interval);

// remove max_interval jobs from the total jobs
remove_jobs_from_interval(jobs, max_interval);

// adjust jobs
adjust_jobs_given_interval(jobs, max_interval);
}

return schedule;

int main(){
int n;
vector<job>jobs;

cin >> n;

for(int k = @; k < n; k++){
int r, d, w;
cin >> r >> d >> w;
job j {r, d, w};
jobs.push_back(j);

vector<interval> schedule = yds(jobs);
cout << energy_consumption(schedule) << endl;
return 0;

9™ Marathon of Parallel Programming — WSCAD — 2014 5

Problem B

The Traveling-Salesman Problem

The Traveling-Salesman Problem (TSP) consists in solving the routing problem of a
hypothetical traveling-salesman. Such a route must pass through n cities, only once per
city, return to the city of origin and have the shortest possible length. It is a very well-
studied NP-hard problem. More formally, the problem could be represented as a
complete undirected graph G = (V, E), |V|] = n where each edge (i, j) € E has an
associated cost c(i, j) > 0 representing the distance from the city i to j (Figure Bla). The
goal is to find a hamiltonian cycle with minimum cost, or a tour with minimum length,

that visits each city only once and finishes at the city of departure.

(a) (b)

Figure B1. Example of TSP with 4 cities.

There are several different approaches to solve this problem. These solutions normally
employ brute force, simple or complex heuristics, approximation algorithms or a mix of
them. The provided sequential version of the algorithm deliberately employs a very
simple brute force exact algorithm based on a simple greedy heuristic. This algorithm
does a depth-first search looking for the shortest path and has complexity O(n!). It does
not explore paths that are already known to be longer than the best path found so far,
therefore it prunes the search space discarding fruitless branches. Figure B1b shows this
behavior. The shaded edges are those that the algorithm does not follow, since a
possible solution that includes them would be more costly than the one it has already

identified. This simple pruning technique greatly improves the performance of the

9™ Marathon of Parallel Programming — WSCAD — 2014 6

algorithm. However, it also introduces irregularities into the search space. The search
depth needed to discard one of the branches depends on the order in which the branches
were searched.

Write a parallel version of the program which outputs the length of a minimum tour.
Your program must use the same greedy heuristic of the provided example, since here
we are interested in the parallelization strategies and not on a better heuristic for the
TSP.

Input

The input might contain several problem instances, which is given by the first line of the
input. Next, each problem is sequentially given as follows. The first line contains the
number of cities (n). The following n lines are space separated integer pairs describing
the Cartesian coordinates of each city.

The input must be read from the standard input.

Output

The output should list the lengths of the shortest paths found for each problem, one
distance per line. To avoid rounding problems all the distances considered by the
sequential program are truncated. Your program should do the same. Look the provided
code for details.

The output must be written to the standard output.

9™ Marathon of Parallel Programming — WSCAD — 2014

Example

Input

3

5

139 191
92 196
88 106
27 40
130 120
7

94 173
9 10
100 14
188 165
168 67
66 5

60 162
3

198 58
77 198
50 3

Output for the input

420
567
538

9™ Marathon of Parallel Programming — WSCAD — 2014

int min_distance;
int nb_towns;

typedef struct {
int to_town;
int dist;

} d_info;

d_info **d_matrix;
int *dist_to_origin;

int present (int town, int depth, int *path) {
int i;
for (i = @; i < depth; i++)
if (path[i] == town) return 1;
return 9;

void tsp (int depth, int current_length, int *path) {
int i;
if (current_length >= min_distance) return;
if (depth == nb_towns) {
current_length += dist_to_origin[path[nb_towns - 1]];
if (current_length < min_distance)
min_distance = current_length;
} else {
int town, me, dist;
me = path[depth - 1];
for (i = @; i < nb_towns; i++) {
town = d_matrix[me][i].to_town;
if (!present (town, depth, path)) {
path[depth] = town;
dist = d_matrix[me][i].dist;
tsp (depth + 1, current_length + dist, path);

void greedy_shortest_first_heuristic(int *x, int *y) {
int i, j, k, dist;
int *tempdist;

tempdist = (int*) malloc(sizeof(int) * nb_towns);
for (i = @; i < nb_towns; i++) {
for (j = @; j < nb_towns; j++) {
int dx = x[i] - x[J];
int dy = y[i] - y[3];
tempdist [j] = dx * dx + dy * dy;

for (j = @; j < nb_towns; j++) {
int tmp = INT_MAX;
int town = 0;
for (k = @; k < nb_towns; k++) {
if (tempdist [k] < tmp) {
tmp = tempdist [k];
town = k;

¥

tempdist [town] = INT_MAX;
d_matrix[i][j].to_town = town;
dist = (int) sqrt (tmp);

d_matrix[i][j].dist = dist;
if (i == @)
dist_to_origin[town] = dist;

free(tempdist);

void init_tsp() {

=4

in

int

int i, st;
int *x, *y;

min_distance = INT_MAX;

st = scanf("%u", &nb_towns);
if (st !'= 1) exit(1l);

d_matrix = (d_info**) malloc (sizeof(d_info*) * nb_towns);
for (i = @; i < nb_towns; i++)

d_matrix[i] = (d_info*) malloc (sizeof(d_info) * nb_towns);
dist_to_origin = (int*) malloc(sizeof(int) * nb_towns);

x = (int*) malloc(sizeof(int) * nb_towns);
y = (int*) malloc(sizeof(int) * nb_towns);

for (i = @; 1 < nb_towns; i++) {
st = scanf("%u %u", x + i, y + i);
if (st != 2) exit(1);

greedy_shortest_first_heuristic(x, y);

free(x); free(y);

run_tsp() {
int i, *path;

init_tsp();

path = (int*) malloc(sizeof(int) * nb_towns);
path[@] = o;

tsp (1, @, path);

free(path);

for (i = @; i < nb_towns; i++)
free(d_matrix[i]);

free(d_matrix);

return min_distance;

main (int argc, char **argv) {

int num_instances, st;

st = scanf("%u", &num_instances);

if (st !'= 1) exit(l);

while(num_instances-- > 0)
printf("%d\n", run_tsp());

return 0;

9™ Marathon of Parallel Programming — WSCAD — 2014 9

Problem C

Minimum Weight Polygon Decomposition

Every convex polygon, with 2 x N vertexes, can be decomposed into N - 1 quadrangles,
by performing N-2 cuts in a straight line between certain pairs of vertexes. Figure C1
illustrates three different decompositions of the same polygon with N=5. The weight of
the decomposition is the sum the lengths of all its N-2 cuts. A Minimum Weight

Polygon Decomposition is a polygon cut that has the minimum weight.

Figure C1. Decomposition examples.

Write a parallel program that finds the weight of a minimum decomposition for each

convex polygon in a list.

Input

The input contains list of polygons. The number of polygons in the list is undetermined.
For each polygon, a set (2 x N) + 1 lines is provided. The first line of the set contains
the value of the integer N (2 < N < 500). The next 2 x N lines contain each a pair of
doubles X and Y (0 < XY < 10000), with four decimal digits: the coordinates of the
2 x N vertexes of the convex polygon, in a counterclockwise direction.

The input must be read from the standard input.

9™ Marathon of Parallel Programming — WSCAD — 2014 10

Output

The solution will print the weight of a minimum polygon decomposition for each
polygon of the input, one weight per line. The output of the parallel version must be
printed in the same order of the sequential one.

The output must be written to the standard output.

Example

Input Output for the input
4 4519.6176
5715.7584 3278.6962 0.0000

3870.5535 4086.7950
3823.2104 4080.7543
3574.4323 170.2905

4521.4796 144.9156

4984.6486 306.2896

5063.1061 347.1661

6099.9959 2095.9358
2

6044.4737 2567.9978
5752.5635 3226.5140
5148.8242 3802.9292
4598.8042 4036.8000

11

9™ Marathon of Parallel Programming — WSCAD — 2014

#define SQUARE(a) ((a)*(a))
#define MAXX 10000
#define MINX ©

typedef struct polygon_s {
int size;
double ** m;
double ** d;
double * x;
double * y;

} polygon_t;

double process(int a, int b, polygon_t * p) {
int i, j;
double temp;
if (p->m[a][b] >= @) {
return p->m[a][b];
}
p->m[a][b] = (2 * (MAXX - MINX) * (p->size));
for (i = (a + 1) % (p->size); i !=b % (p->size); i = (i + 2) % (p->size)) {
for (j = (i + 1) % (p->size); j !'= (b + 1 + (p->size)) % (p->size);
j = (3 +2) % (p->size)) {
temp = process(a, i, p) + process(i, j, p) + process(j, b, p)
+ p->d[a][i] + p->d[i][]] + p->d[j][b];
if (p->m[a][b] > temp)
p->m[a][b] = temp;

}
return p->m[a][b];
¥
double * allocate_vector(int size, char name) {
double * v;
if ((v = (double *) malloc(sizeof(double) * size)) == NULL) {
fprintf(stderr, "Error allocating memory for polygon data (%c). \n", name);
exit(1);
}
return v;
¥
double ** allocate_square_matrix(int size, char name) {
double ** m;
if ((m = (double **) malloc(sizeof(double *) * size)) == NULL) {
fprintf(stderr, "Error allocating memory for polygon data (%c). \n", name);
exit(1);

int i;
for (i = 0; i < size; i++) {
if ((m[i] = (double *) malloc(sizeof(double) * size)) == NULL) {
fprintf(stderr, "Error allocating memory for polygon data (%c). \n", name);
exit(1);

}
return m;
¥
polygon_t * allocate_polygon_data(int n) {
polygon_t * p;
if ((p = (polygon_t *) malloc(sizeof(polygon_t))) == NULL) {
fprintf(stderr, "Error allocating memory for polygon data. \n");
exit(1);
}
int size = 2 * n;
p->x = allocate_vector(size,
p->y = allocate_vector(size,

}

p->m
p->d

= allocate_square_matrix(size, 'm
= allocate_square_matrix(size, 'd'

p->size = size;
return p;

int read_polygon(polygon_t ** p) {
int n, i, status = 0;
if ((status = scanf("%d", &n)) == 1) {

}

}

*p = allocate_polygon_data(n);
n *= 2;
for (i =0; 1 < n; i++) {
scanf("%Lf %1f", &((*p)->x[1]), &((*p)->y[i]));

return (status > 0);

void init(polygon_t * p) {

}

int i, j;

for (1 = 0; i < p->size; i++) {

}

for (j = 0; j < p->size; j++) {
if ((1 + 1) % p->size
p->d[i][3] = e;
p->m[i][3] = o;
} else {
p->d[i][J] = sart(SQUARE((p->x[1])-(p->x[J]))+SQUARE((p->y[i])-(p->y[i1)));
p->m[i][3] = -1;

il
il
.
-~

}

void free_polygon(polygon_t *p) {

}

free

p->x); free(p->y);

for (i = 0; i < (p->size); i++) {

free(p->d[i]); free(p->m[i]);

free(p->d); free(p->m); free(p);

int main() {

int i;
double smaller, temp;
polygon_t * p;

while (read_polygon(&p)) {

}

init(p);
smaller = (2 * (MAXX - MINX) * (p->size));

for (i = @; i < p->size; i++) {
temp = process((i + 3) % p->size, i, p)
+ p->d[(i + 3) % p->size][i];

if (temp < smaller)
smaller = temp;

free_polygon(p);

printf("%.4f\n", smaller);

return 0;

9™ Marathon of Parallel Programming — WSCAD — 2014 12

Problem D
A Graph’s Maximal Independent Set

An independent set of a graph is any subset of its nodes where no two nodes are
adjacent. l.e., for a given undirected graph G = {V, E}, such that V is its set of n nodes
labelled from 1 to n and E is its set of edges — each edge a pair (v, uy withv, u € V —, an
independent set S — V is a set where, for any two v’, u’ € S, there is neither (v’, u’) nor
(u’, v’y in E. A maximal independent set | of a graph is an independent set that is not a
subset of any other independent set. l.e., there isno v € V - | such that I v {v} is an

independent set. See Figure D1.

P21 ()=¢
I (=(

Figure D1. All maximal independent sets of the cube graph (by David Eppstein, public

domain)

The given sequential program receives as input an arbitrary undirected graph and
outputs one maximal subset using Luby’s Method. The method iterates the following
steps until the input is empty:

1. Select nodes from the input with probability 1/2°, where o is the node’s degree.

2. Unselect lowest degree node of two neighbor selected nodes.

3. Move the remaining selected nodes to the maximal independent and remove

them and their neighbors from the input.

You have to re-write it in order to obtain speedup.

9™ Marathon of Parallel Programming — WSCAD — 2014 13

Input
It is a sequence of lines. The first line contains a pair of integers — separated by space —,
the number of nodes and number of edges. The following lines, one per edge, are also
space-separated pairs of integers, each representing edges between the correspondent
nodes.
Invariants:

e There is no self-edge, i.e., for a given node X, the line “x x” never appears in the

list of edges.
e Each edge of the undirected graph appears only once (one line) on the input file.

Its format is “x v”, where x <.

The input must be read from the standard input.

Output

It contains just one line, with all the nodes in the maximal independent set separated by
space.

The output must be written to the standard output.

Example

Input Output for the input

N

1 3 6 8

~ o OO W WNDNE - 0
O ~J OO0 JIbdoyWwWOu b N

14

9™ Marathon of Parallel Programming — WSCAD — 2014

#define Set std::set
#define Vertex std::size_t
#define Edge std::pair<Vertex, Vertex>

// data structures
struct Graph {

Set<Vertex> v ;
Set<Edge> e ;

// default constructor
Graph () {} ;

// copy constructor
Graph (const Graph& x) : v (x.v), e (x.e) { } ;

// assignment

Graph& operator= (const Graph& x) {
this->~Graph () ;
new (this) Graph (x) ;
return *this ;

// equality comparison
friend
bool operator== (const Graph& x, const Graph& y) {
return (x.v == y.v) & (x.e == y.e) ;

// inequality comparison
friend

bool operator!= (const Graph& x, const Graph& y) {
1mn:1:_Axuu<vw

// vertex degree
std::size_t degree (Vertex i) const
{

std::size_.t n =0 ;

for (const Edge& p : e) {

if (p.first == i || p.second == i) ++ n ;

}

return n ;

// vertex degree
bool are_neighbors (Vertex x, Vertex y) const
{
Vertex a = std::min (x, y) ;
Vertex b = std::max (x, y) ;
if (e.find (Edge (a, b)) != e.end ()) return true ;
return false ;

// selects node with probability 1/2”n

// using a uniformly random generated natural m
template <typename N, typename M> inline

bool try_select (N n, M m)

{

}
template <typename S> inline
void set_union (S& x, const S& y) {
for (const auto& i : y) {
x.insert (i) ;

return (m % (N (1) << n)) + N (1) <= N (1) ;

}
return ;
}
void exclude_neighbors (Set<Vertex>& v, const Graph& g) {
for (Vertex i : v) for (Vertex j : v) {
if (g.are_neighbors (i, j)) {
v.erase (i) ;
}
}
return ;
}
template <typename S> inline
void set_difference (S& x, const S& y) {
for (const auto& i : y) {
x.erase (i) ;
¥
return ;
}
template <typename RandGenerator>
void rand_select (Set<Vertex>& u, const Set<Vertex>& v, const Graph& g, RandGenerator& r) {
// constant-time clear of u (STL method is linear time)
Set<Vertex> x ;
x.swap (u) ;
for (Vertex i : v) {
if (try_select (g.degree (i), r ())) {
u.insert (i) ;
}
}
return ;
}
Set<Vertex> mis (const Graph& g) {
Set<Vertex> m; // current mis (empty)
Set<Vertex> u;// currently selected nodes (empty)
Set<Vertex> v = g.v;// initial set of vertexes
std::minstd rand r;// an STL linear congruential random number gen.
while (! v.empty ()) {
do {
rand select (u, v, g, r);
Jwhile (u.empty ());
set_difference (v, u);
exclude_neighbors (u, g);
set_difference (v, neighbors (u, g));
set_union (m, u);
}
return m;
}
int main(int argc, char *argv[]) {
out(mis(in()));
return 0;

9™ Marathon of Parallel Programming — WSCAD — 2014 15

Problem E

Enumeration Sort?

Enumeration Sort is a method of finding the exact position of each element in a sorted
list by comparing and finding the frequency of elements having smaller value (Knuth,
1973). That is if p elements are smaller than aq, then ay occupies the (p+1)th position in
the sorted list.

Write a parallel version of the Enumeration Sort algorithm.

Input

The input file contains only one test case. The first line contains the total number of
keys (N) to be sorted (1 < N < 10™). The following lines contain N keys, each key in a
separate line. A key is a seven-character string made up of printable characters (0x21 to
OX7E — ASCII) not including the space character (0x20 ASCII).

The input must be read from a file named sort.in

Output
The output file contains the sorted keys. Each key must be in a separate line.

The output must be written to a file named sort.out

Example

Input Output for the input
11 1234567
SINAPAD CTDeWIC
SbacPad LADGRID
Wscadl4 MPP2014
Sinapad SINAPAD
1234567 SINApad
LADGRID SbacPad
WEAC-14 Sinapad
CTDeWIC WEAC-14
sinaPAD Wscadl4
MPP2014 sinaPAD
SINApad

2 NPTEL :: Computer Science and Engineering - Parallel Algorithms. URL:
http://nptel.ac.in/courses/106106112/13 .

16

9™ Marathon of Parallel Programming — WSCAD — 2014

#tdefine LENGTH 8
FILE *fin, *fout;

char *strings;
long int N;

void openfiles() {
fin = fopen("sort.in", "r+");
if (fin == NULL) {
perror("fopen fin");
exit(EXIT_FAILURE);

fout = fopen("sort.out", "w");

if (fout == NULL) {
perror("fopen fout");
exit(EXIT_FAILURE);

void closefiles(void) {
fclose(fin);
fclose(fout);

void enun_sort(char *a, int length, long int size) {

long int i, j, rank;
char *tmp = malloc(length);

/* Enumeration sort */
for (j = ©; j < size; j++) {
rank = 0;
for (i = 0; i < size; i++) {
if (strcmp(a + (i * length), a + (j * length)) < 0)
rank++;
}
if (j < rank)
while (rank < size && !strcmp(a + (rank * length), a
+ (j * length)))
rank++;

else
while (rank < j && !strcmp(a + (rank * length), a +
(3 * length)))
rank++;
if (rank !'= j) {
strcpy(tmp, a + (rank * length));
strcpy(a + (rank * length), a + (j * length));
strcpy(a + (j * length), tmp);
J--5

¥
free(tmp);

}
int main(int argc, char* argv[]) {
long int i;
openfiles();

fscanf(fin, "%1d", &N);

strings = (char*) calloc(N, LENGTH);

if (strings == NULL) {
perror("malloc strings");
exit(EXIT_FAILURE);

¥

for (i = 0; i < N; i++)
fscanf(fin, "%s", strings + (i * LENGTH));

enun_sort(strings, LENGTH, N);

for (1 =0; i < N; i++)
fprintf(fout, "%s\n", strings + (i * LENGTH));

free(strings);
closefiles();

return EXIT_SUCCESS;

9™ Marathon of Parallel Programming — WSCAD — 2014 17

Problem F
Dijkstra

Dijkstra’s algorithm, conceived by computer scientist Edsger Dijkstra in 1956 and
published in 1959, is a graph search algorithm that solves the single-source shortest path
problem for a graph with non-negative edge path costs®.

For a give node in a graph, the algorithm finds the path with lowest cost (i.e. the shortest

path) between that node and the destination node. Figure F1 shows a graph.

(1)
2)

(1

\ y
2
oo @O-2=@

(3)

Figure F1. A simple graph.

An adjacency list representation for a graph associates each node in the graph with the

collection of its neighboring nodes®. I.e, for Figura F1, its representation can be:

AR

a s W N R
|

This list also can store the weight of each edge or other information that helps the
algorithm finding the shortest path.

Write a parallel version of the Dijkstra’s algorithm.

® Dijkstra’s algorithm. URL: http://en.wikipedia.org/wiki/Dijkstra's_algorithm .
* Adjacency list. URL: http://en.wikipedia.org/wiki/Adjacency _list .

9™ Marathon of Parallel Programming — WSCAD — 2014 18

Input

The input contains 3 integers. The first integer represents the total number of nodes in
the graph (2 <V < 50). The second integer represents the average number of outgoing
edges per node (1 < E <V/2). The last integer represents the seed for a random number
generator (0 < S < 2%9).

The input must be read from the standard input.

Output

The output has only one number. It represents the mean distance from node 0 to all
nodes.

The output must be written to the standard output.

Example

Input Output for the input

52 6 14.20

19

9™ Marathon of Parallel Programming — WSCAD — 2014

struct Graph {
int nNodes;
int *nEdges;
int **edges;
int **w;

b

struct Graph *createRandomGraph(int nNodes, int nEdges, int seed) {
my_srand(seed);

struct Graph *graph = (struct Graph *) malloc(sizeof(struct Graph));
graph->nNodes = nNodes;

graph->nEdges = (int *) malloc(sizeof(int) * nNodes);

graph->edges = (int **) malloc(sizeof(int *) * nNodes);

graph->w = (int **) malloc(sizeof(int *) * nNodes);

int k, v;

for (v = @; v < nNodes; v++) {
graph->edges[v] = (int *) malloc(sizeof(int) * nNodes);
graph->w[v] = (int *) malloc(sizeof(int) * nNodes);
graph->nEdges[v] = 0;

int source = 0;
for (source = @; source < nNodes; source++) {
int nArestasVertice = (double) nEdges / nNodes
* (0.5 + my_rand() / (double) RAND_MAX);
for (k = nArestasVertice; k >= 0; k--) {
int dest = my_rand() % nNodes;
int w = 1 + (my_rand() % 10);
graph->edges[source][graph->nEdges[source]] = dest;
graph->w[source][graph->nEdges[source]++] = w;

return graph;

¥

int *dijkstra(struct Graph *graph, int source) {
int nNodes = graph->nNodes;
int *visited = (int *) malloc(sizeof(int) * nNodes);
int *distances = (int *) malloc(sizeof(int) * nNodes);
int k, v;
for (v = @; v < nNodes; v++) {
distances[v] = INT_MAX;
visited[v] = 0;

}

distances[source] = 0;

visited[source] = 1;

for (k = @; k < graph->nEdges[source]; k++)
distances[graph->edges[source][k]] = graph->w[source][k];

for (v = 1; v < nNodes; v++) {
int min = 0;
int minvalue = INT_MAX;
for (k = @; k < nNodes; k++)
if (visited[k] == © && distances[k] < minValue) {
minvalue = distances[k];
min = k;
}
visited[min] = 1;
for (k = @; k < graph->nEdges[min]; k++) {
int dest = graph->edges[min][k];
if (distances[dest] > distances[min] + graph->w[min][k])
distances[dest] = distances[min] + graph->w[min][k];
}
}
free(visited);
return distances;

int main(int argc, char ** argv) {

int nNodes;
int nEdges;
int seed;
if (argc == 4) {
nNodes = atoi(argv[1]);
nEdges = atoi(argv[2]);
seed = atoi(argv[3]);
} else {
fscanf(stdin, "%d %d %d", &nNodes, &nEdges, &seed);
}
assert(nEdges <= nNodes/2);
nEdges = nNodes * nEdges;

struct Graph *graph = createRandomGraph(nNodes, nEdges, seed);
int *dist = dijkstra(graph, 0);

double mean = 0;

int v;

for (v = @; v < graph->nNodes; v++)
mean += dist[v];

fprintf(stdout, "%.2f\n", mean / nNodes);
return 0;

