10™ Marathon of Parallel Programming

SBAC-PAD — 2015

October 19", 20135.

Rules for Local Contest

For all problems, read carefully the input and output session. For all problems, a sequential
implementation is given, and it is against the output of those implementations that the output
of your programs will be compared to decide if your implementation is correct. You can
modify the program in any way you see fit, except when the problem description states
otherwise. You must upload a compressed file with your source code, the Makefile and an
execution script. The script should have the name of the problem. You can submit as many
solutions to a problem as you want. Only the last submission will be considered. The
Makefile must have the rule all, which will be used to compile your source code before
submit. The execution script runs your solution the way you design it — it will be inspected
not to corrupt the target machine.

All Local Teams have access to the target machine during the marathon. Your execution may
have concurrent process from other teams. Only the judges have access to a non-concurrent
environment.

The execution time of your program will be measured running it with time program and
taking the real CPU time given. Each program will be executed at least three times with the
same input and the mean time will be taken into account. The sequential program given will
be measured the same way. You will earn points in each problem, corresponding to the
division of the sequential time by the time of your program (speedup). The team with the

highest points at the end of the marathon will be declared the winner.

This problem set contains 7 problems; pages are numbered from I to 21.

10™ Marathon of Parallel Programming — SBAC-PAD — 2015 1

Problem A

Lossless Text Compression

Translating text characters to binary prefix codes is a common way to perform lossless
compression of text — i.e., to produce a smaller representation of the data that can be used to
reconstruct the original input without any loss. Prefix codes are codifications whose main
property is that there is no code word in the system that is a prefix of any other code word in
the same system. This trait ensures that the original data can be reconstructed straightforward
through a “single pass” on the compressed text, without further parsing.
In this context, the proposed problem can be defined as follows. Given a set of symbols (in
this case, text characters) and their weights (usually proportional the number of times it
occurs on some input text), find a set of binary prefix codes (one for each symbol) whose
expected codeword length is minimum. More formally, given the symbol alphabet
A = {ay, ay, ..., a,} and the set of positive symbol weights W = {w;, wa, ..., w,}, such that
weight(a;) = w;, find a tuple of codewords C = (cy, ca, ..., ¢,), Where ¢; = codeword(a;). The
goal, thus, is to obtain a C such that, for any other code 7, L(C) < T(C), where
L(C) =Y, w; Xlength(c;) is the weighted path length of code C.
You shall parallelize Huffinan Coding, an algorithm that generates minimum binary prefix
codes for a list of characters and their associated frequencies on some input text. The
technique works by creating a binary tree of nodes where each node can be either a leaf node
(corresponding to a symbol and its associated frequency) or an internal node (corresponding
to a sum of frequencies). Then, the codes are obtained by cumulatively labeling each link
between nodes with 0 or 1 in a depth-first visit on the nodes of this tree. The algorithm is
detailed next.
Initially, there are only n leaf nodes, one for each symbol, which contains the symbol itself
and its weight (frequency). The construction algorithm uses a priority queue sorted by the
symbols’ weight, where the node with lowest weight is given highest priority:
1. Add all leaves to the priority queue.
2. While there is more than one node in the queue:
Remove the two nodes of highest priority (lowest weight) from the queue;
b. Create a new internal node with these two nodes as children and with weight
equal to the sum of the two nodes’ weights;

c. Add the new node to the queue.

10™ Marathon of Parallel Programming — SBAC-PAD — 2015 2

3. The remaining node is the root node and the tree is complete.

After the tree is assembled, in order to get the binary codes one shall perform a depth-first
tree traversal in pre-order. To each leaf corresponds a binary code, built going from the root
to it, adding a “0” at each time the path goes by a left child and an “1”” when it goes by a right
child.

Figure Al shows an assembled Huffman Tree, with the paths labeled. A given code is

delivered by concatenating the zeros and ones from a leaf to the root.

(238)
(957 i)

e \ LN

6\!
1/‘\n - _\Il]‘/Xu 1/‘\u
19 23 V".LI 20| | 3l
a e][\Ll z / \Il w o k u

11 13 1“' 17

Figure Al. A Huffman Tree. The leaf nodes are represented by pink squares and the numbers
inside it represent the frequency of a symbol, which is placed under it. The circles are the
intermediary nodes and represent a sum of frequencies. Each edge is labeled with 0 or 1,

corresponding to a left or right child (the concatenation of the labels in a given branch is the

binary prefix code for a given tree)'.

Important. Although more than one correct solution exists, your parallel version shall provide

the same output as the provided sequential solution.

Input
The first line of the input contains the number of lines of the input text, say N
(0 < N < 10°). Then, the following N lines are strings of at most 256 ASCII characters that

serve as symbols. The only restriction on the characters to appear is that they are readable and

' Figure from http://mathworld.wolfram.com/HuffmanCoding.html

10™ Marathon of Parallel Programming — SBAC-PAD — 2015 3

no other spacing is present other than the space character.
Blank lines may appear and are valid.

The input must be read from the standard input.

Output

It is also a sequence of lines. Each line corresponds to a symbol and shows its frequency
(number of time it appears) on the input text and the correspondent binary code. The format
is “X Y Z”, where X is the symbol, Y is the frequency, and Z is the binary prefix code. For
instance, one line could be “h 13 0110, meaning the symbol h appears 13 times on the
input text and has prefix code 0110. There is only one invariant: if the input text contains the
space character it must appear as the word “space” on the output instead of the space
character.

The output must be written to the standard output.

Example

Input Output for the input

2 ''2 110111
this is an example of a huffman tree a 7 1110
j'aime aller sur le bord de l'eau les jeudis b 1 1111000
d 3 10110
11 100
10111

2 111101
4 11111
2 01000
6 1100

3 11010
2 01001
2
1
4
5
a

w

01010
1111001
0110
1010

ce 15 00

t 2 01011

u 4 0111

x 1 110110

10™ Marathon of Parallel Programming — SBAC-PAD — 2015

class HuffmanTree { return m ;

}
enum { left = 0, right = 1 } ; m = walk (h.left_subtree (), ¢ + Code ("0"), m) ;
m = walk (h.right_subtree (), c + Code ("1"), m) ;
public : return m ;

Weight weight =
Symbol symbol =

Vector <HuffmanTree> children ; PriorityQueue <HuffmanTree> make_queue (Map <Symbol, Weight> m) {
PriorityQueue <HuffmanTree> g ;
HuffmanTree () for (auto i : m)
g.push (HuffmanTree (i.first, i.second)) ;
HuffmanTree (const HuffmanTree& e) { return q ;
symbol = e.symbol ; }
weight = e.weight ;

HuffmanTree huffman (Map <Symbol, Weight> m) {

! m.empty ()) ; // precondition
PriorityQueue <HuffmanTree> p = make queue (m) ;
HuffmanTree a, b;

children = e.children ;

HuffmanTree& operator= (const HuffmanTrees e) {
symbol = e.symbol ; do .
weight = e.weight a = extract (p) ;

; if (p.empty ()) break ;
i b = extract (p) ;
p.push (HuffmanTree (a, b)) ;
} while (true) ;
return a ;

e
children = e.children
return *this

HuffmanTree (Symbol s, Weight w) { !
symbol = s ; template <typename OutStream>
- welght = w int write (OutStreams out, Map <Symbol, Weight> w, Map <Symbol, Code > c) {
} for (auto i : w)
out << i.first << " " << i.second << " " << c[i.first] << std::endl;

HuffmanTree (HuffmanTree a, HuffmanTree b)
weight = a.weight + b.weight ; }
children.push _back (a) ; children.push back (b) ;
symbol = a.symbol + b.symbol ; template <typename I, typename M> bool found (I i, const M& m) {

std::end (m) ;

return 0 ;

} return i !

return children[left]
return children[right]

HuffmanTree left_subtree ()
HuffmanTree right_subtree ()

template <typename Pair> Map <Symbol, Weight> insert or_add (Map <Symbol, Weight> m , Pair p) {

bool is_leaf () { return children.empty ()) auto i = m.find (p.first) ;
if (found (i, m)) i -> second += p.second ;
friend bool operator== (HuffmanTree a, HuffmanTree b) { else m.insert (p) ;
return a.symbol == b.symbol && a.weight == b.weight ; return m ;
} }
friend bool operator< (HuffmanTree a, HuffmanTree b) { Map <Symbol, Weight> map weighted union (Map <Symbol, Weight> a , Map <Symbol, Weight> b) {
return a.weight == b.weight ? a.symbol < b.symbol : a.weight < b.weight ; for (auto e : b) a = insert_or_add (a, e) ;
) return a ;
}
friend bool operator> (HuffmanTree a, HuffmanTree b) { . . .
template <typename InStream> String read_line (InStreams in) {
return b < a ; : _
N String s ;
: std::getline (in, s) ;
friend bool operator<= (HuffmanTree a, HuffmanTree b) { return s ;

return ! (a > b) ; :

) Symbol to_symbol (char c){

. if (c == ' ') return Symbol i
operator>= (HuffmanTree a, HuffmanTree b) { return Symbol ({c}) ;
return ! (a < b) ; }
Map <Symbol, Weight> insert or increment(Map <Symbol, Weight> m, Symbol s){
b auto i = m.find (s) ;
if (found (i, m)) ++ (i -> second) ;
HuffmanTree extract (PriorityQueue <HuffmanTree>& p) ({ else m.insert ({s, Weight (1)}) ;
HuffmanTree r ; return m ;
r = p.top () i !
p.pop () ;i
return r ; template <typename InStream> Map <Symbol, Weight> read_entry (InStream& in) {
) Map <Symbol, Weight> m ;
for (char ¢ : read_line (in))
Map <Symbol, Code> walk (HuffmanTree h, Code c = Code (), Map <Symbol, Code> m = Map <Symbol, Code> ()) { m = insert_or_increment (m, to_symbol (c)) ;
if (h.is_leaf ()) { return m ; o -
m.insert ({h.symbol, c}) ; }

10™ Marathon of Parallel Programming — SBAC-PAD — 2015 5

Problem B
N-Body

In physics, the N-Body problem consists in simulating the gravitational interaction between N
particles (bodies) in a system and predicting how the system would evolve in a time frame. In
this application the initial position and mass for each particle is randomly generated. The
application will compute gravitational forces, positions and velocity of each particle in each
time step of the simulation.

We are not interested in finding out different algorithms for computing the N-Body
simulation. We just want to focus on obtaining a parallel version of the given code.

Therefore, it is not allowed to change the computation method used in this problem.

Input

Input data contains the quantity of particles to be considered (0 < N < 2"°) and the number of
time steps to be simulated (0 <.S < 100), separated by a line break.

The input must be read from the standard input.

Output

Output data contains the coordinates of each particle in the R3. X, Y and Z coordinates are
separated by one space and coordinates for each particle are separated by line breaks.

The output must be written to the standard output.

Example

Input Output for the input

4 0.38986 0.38878 0.70927

10 0.72951 0.07322 0.13581
0.28209 0.51066 0.99480
0.46793 0.72547 0.13771

10™ Marathon of Parallel Programming — SBAC-PAD — 2015

typedef struct {
double x, vy, z;
double mass;
} Particle;
typedef struct {

double xold, yold, zold;
double fx, fy, fz;
} ParticleV;

int main() {
double time;
Particle * particles; /* Particles */
ParticleV * pv; /* Particle velocity */
int npart, i, J;
int cnt; /* number of times in loop */
double sim_t; /* Simulation time */
int tmp;

tmp = fscanf (stdin, "%d\n", &npart);
tmp = fscanf (stdin, "%d\n", &cnt) ;

/* Allocate memory for particles */
particles = (Particle *) malloc(sizeof (Particle) *npart);
pv = (ParticleV *) malloc(sizeof (ParticleV) *npart);

/* Generate the initial values */
InitParticles(particles, pv,
sim_t = 0.0;

npart) ;

while (cnt--) {
double max_f;
/* Compute forces (2D only) */
max_f = ComputeForces(particles, particles, pv, npart);
/* Once we have the forces, we compute the changes in position */
sim_t += ComputeNewPos(particles, pv, npart, max_ f);
}
for (i=0; i<npart; i++)
fprintf (stdout, "%.51f $.51f $.51f\n",
particles[i].z);
return 0;

particles[i].x, particles[i].y,

void InitParticles(Particle particles[], ParticleV pv[], int npart) {

int 1i;

for (i=0; i<npart; i++) {
particles[i].x = Random() ;
particles[i].y = Random() ;
particles[i].z = Random() ;
particles[i].mass = 1.0;
pv[i].xold = particles[i].x;
pv[i].yold = particles[i].y;
pv[i].zold = particles([i].z;
pv[i].fx = 0;
pvli] .fy = 0;
pv[i].fz = 0;

}

double ComputeForces(Particle myparticles[], Particle others[], ParticleV pv[],
double max_f;
int i;
max_f = 0.0;
for (i=0; i<npart; i++) {
int j;
double xi, yi, mi, rx, ry, mj, r, fx, fy, rmin;
rmin = 100.0;
xi = myparticles[i
yi = myparticles[i
fx = 0.0; fy = 0.0;
for (j=0; j<npart; j++) {
rx = xi - others[j].x;
ry = yi - others[j].y;
mj = others[]j].mass;

}

r =

rx * rx + ry * ry;

/* ignore overlap and same particle */

if (

== 0.0) continue;

if (r < rmin) rmin = r;
r = 1r * sqrt(r);
fx -=mj * rx / r;
fy == mj * ry / r;
}
pv[i].fx += fx;
pv[il.fy += fy;
fx = sqrt (fx*fx + fy*fy)/rmin;
if (fx > max_f) max_f = fx;

}

return max_f;

double ComputeNewPos(Particle particles[], ParticleV pv[], int npart,
int i;
double a0, al, a2;
ic double dt_old = 0.001, dt = 0.001;
double dt_new;
a0 = 2.0 / (dt * (dt + dt_old));
a2 = 2.0 / (dt_old * (dt + dt_old));
al = -(a0 + a2
for (i=0; i<npart; i++) {
double xi, yi;
xi = particles[i].x;
yi = particles[i].y;
particles([i].x = (pv[i].fx - al * xi - a2 * pv[i].xold) / a0;
particles([i].y = (pv[i].fy - al * yi - a2 * pv[i].yold) / a0;

}

}
dt_new =
/* set a

if (dt_new < 1.0e-6)

.xold = xi;
.yold = yi;
Lfx = 0;
.fy = 0;

1.0/sgrt (max_f);
minimum: */
dt_new = 1.0e-6;

/* Modify time step */
if (dt_new < dt) {

dt_old
dt

}

else if
dt_old
dt

}

= dt;
= dt_new;

(dt_new > 4.0 * dt) {
= dt;
*=2.0;

return dt_old;

double max_f)

int npart

{

)

{

10™ Marathon of Parallel Programming — SBAC-PAD — 2015 7

Problem C

LU Decomposition®

It is very common to use LU decomposition for solving square systems of linear equations. It
factors a matrix as a product of two other matrices: L, which is a lower triangular matrix, and

U, which is an upper triangular matrix:
A=LU

In the lower triangular matrix all elements above the diagonal are zero, in the upper triangular
matrix, all the elements below the diagonal are zero.

The good solution to this problem is pivoting A, which means rearranging the rows of A,
prior to the LU decomposition, in a way that the largest element of each column gets onto the

diagonal of A. Rearranging the rows means to multiply A by a permutation matrix P:
PA=LU

Your task is to improve performance of the source-code using parallel strategies. We are not
interesting in finding out which decomposition is better; therefore is not allowed to change

the LU decomposition.

Input
The input file contains only one test case. The first line contains the size of a square matrix
(0 < N<10%. Next N lines are the rows of the matrix, N real numbers per row.

The input must be read from the standard input.

Output

The output must have three matrices in the following order: P, L and U. There must be a

? The source and description came from http://rosettacode.org/wiki/LU_decomposition and
https://en.wikipedia.org/wiki/LU_decomposition .

10™ Marathon of Parallel Programming — SBAC-PAD — 2015

blank line between matrices. For each matrix, there are N lines and N elements per line.

The output must be written to the standard output.

Example 1
Input Output for the input
3 0.00000 1.00000 0O0.0000O
1 35 1.00000 0.00000 0.0000O0
247 0.00000 0.00000 1.00000
110
1.00000 0.00000 0.0000O0
0.50000 1.00000 0.0000O
0.50000 -1.00000 1.00000
2.00000 4.00000 7.00000
0.00000 1.00000 1.50000
0.00000 0.00000 =2.00000
Example 2
Input Output for the input
3 0.00000 0.00000 1.00000
35.70631 76.06820 38.30932 1.00000 0.00000 0.00000
37.57327 32.90746 151.85924 0.00000 1.00000 0.00000
89.49273 39.05083 108.00119
1.00000 0.00000 0.0000O0
0.39899 1.00000 0.00000
0.41985 0.27298 1.00000

89.49273 39.05083
0.00000 60.48748 -4.78160
0.00000 0.00000 107.82054

108.00119

10™ Marathon of Parallel Programming — SBAC-PAD — 2015

typedef double **mat;
void mat_del (mat x) {

free(x[0]);
free (x);

mat mat_new(int n) {

int 1i;

mat x = malloc(sizeof (double*) * n);
x[0] = malloc(sizeof(double) * n * n);
if(x[0] == NULL)

perror ("memory other failure™);

for (

x[

i++) |

i=0; i<n;
i] = x[0] + n * 1i;
}

mat_zero(x,n);

return x;

mat mat mul (const mat a, const mat b, int n)
int i,79,k;
mat ¢ = mat new(n);
for (1=0; i<n; i++) {
for (k=0; k<n; k++) {
for(j=0; j<n; j++) {
c[i][3]) += ali]l (k] * blk][3];

}

return c;

void mat_pivot(mat a, mat p, int n) {
int i,3,k;
for (i=0; i<n; i++) {
for(j=0; j<n; j++) {
plil (i) = (1 == J);

}

for (1=0; i<n; i++) {

int max_j = i;
for(3=i; j<n; j++) {
if (fabs(aljl[i]) > fabs(almax j][1]))
max_j = j;
}
if (max_3j != 1) |

for (k=0; k<n; k++) {
double tmp;

tmp = p[i][k];
pli] [k] = plmax_j][k];
plmax j] (k] = tmp;

{

void mat_LU(mat A, mat L, mat U, mat P, int n)

int i,3,k;

mat zero(L,n);
meHNmHOAG\:V“
mat_pivot (A, P, n);

mat Aprime = mat_mul (P, A, n)

for (i=0; i<n; i++) {
for(j=0; j<n; j++) {
double s;
if (3 <=1) |

- s;

s=0;
for (k=0; k<j; k++) {
s += L[J] (k] * U[k][i];
}
U[j1[i] = Aprime[]j][i]
}
if (3 >= 1) |
s=0;

for (k=0; k<i; kt++) {

s += L[jl1[k] * U[k][i];

L[j1[i] = (Aprime([j][i]

}
mat_del (Aprime) ;

int main() {
int n;
mat A, L, P, U;

fscanf (stdin,
A = mat_new(n
L = mat new(n
P = me\:msnz
U = mat new(n

d",&n) ;

mat gen(A,n);

mat_LU(A, L, U, P, n);

mat show (P,
@HHMﬁmA:/u)
mat show (L,
@HHMmmA:/u:'n

mat_show (U, "U",0,n);

return 0;

- s) / ULi)[41s

{

10™ Marathon of Parallel Programming — SBAC-PAD — 2015 10

Problem D
The K-Means Clustering Problem

Clustering analysis plays an important role in different fields, including data mining, pattern
recognition, image analysis and bioinformatics. In this context, a widely used and studied
clustering approach is the K-Means clustering. Formally, the K-Means clustering problem
can be defined as follows. Given a set of # points in a real d-dimensional space, the problem
is to partition these » points into k partitions, so as to minimize the mean squared distance
from each point to the center of the partition it belongs to. Figure D1 illustrates an instance of

this problem.

Original data Clustered data
Figure D1. An example of K-Means with 5 partitions.

The general solution to this problem has been shown to be NP-Hard, even with just two
clusters (and an arbitrary number of dimensions) or on the plane (for an arbitrary number of
clusters). For this reason, several distinct heuristics and approximation algorithms have been
proposed to address the K-Means clustering problem. One of the most widely employed is
Lloyd’s algorithm, also known as K-Means algorithm. Such heuristic is based on an iterative
strategy that finds a local minimum solution for the problem.

The algorithm takes as input the set of data points, the number of partitions, and the minimum
accepted distance between each point and the partition’s center (centroids). Upon completion,
the algorithm returns the partitions themselves. Initially, data points are evenly and randomly
distributed among the £ partitions, and the initial centroids are computed. Then, the data

points are re-clustered into partitions taking into account the minimum Euclidean distance

10™ Marathon of Parallel Programming — SBAC-PAD — 2015 11

between them and the centroids — points are assigned to the nearest partition. Next, the
centroid of each partition is recalculated taking the mean of all points in the partition, and the
whole procedure is repeated until no centroid is changed and every point is farther than the
minimum accepted distance.

Write a parallel version of the sequential program which outputs the clustering solution
found. Pay special attention to the parallelization strategy: since this is not an exact
algorithm, the order of execution might influence the results. The only acceptable output for

your program is one that is identical to the sequential version’s output.

Input

The program must read 5 input parameters. The parameters will be given in the following
order: number of points (0 < P < 2'%), dimensions (0 < D < 2%, number of clusters
(0 < C <2'"), minimum distance between points and centroids (0 < M < 10), and the seed for
the random number generator (0 < § < 29,

The input must be read from the standard input.

Output
For each point, the program should print a line containing its cluster number on the final
solution.

The output must be written to the standard output.

10™ Marathon of Parallel Programming — SBAC-PAD — 2015 12
Example
Input Output for the input

20 2 4 0.0 321

ONEFEFREPNEFEPONNWNOWOREFE WNWOLR

13

10™ Marathon of Parallel Programming — SBAC-PAD — 2015

typedef float* vector_ t;

int npoints;

int dimension;

int ncentroids;
float mindistance;
int seed;

vector_t *data;
int *map;

vector t *centroids;
int *dirty;

int too_far;

int has_changed;

float v_distance(vector_t a, vector_ t b)

int
flo
for

ret

static
int
flo
flo
too
for

static
int
int
has
*
for

i
at distance = 0;
(1 = 0; 1 < dimension; 1i++)
distance += pow(al[i] - b[i]
urn sqgrt(distance);

;2)

*/

void populate(void) {
i, 37
at tmp;
at distance;
_far = 0;
(i = 0; 1 < npoints; i++) {
distance = v_distance (centroids([map[i]], datalil]);
/* Look for closest cluster. */
for (j = 0; J < ncentroids; j++)
/* Point is in this cluster.
if (J == map[i]) continue;
tmp = v_distance(centroids([j], datal[i]);
if (tmp < distance) {
mapli] = 3;
distance = tmp;
dirty[j] = 1;
}
}
/* Cluster is too far away. */
if (distance > mindistance)
too_far = 1;
void compute centroids(void) {
i, 3, k;
population;
_changed = 0;
Compute means. */

(i = 0; 1 < ncentroids; i++)
if (!dirty[i]) continue;

memset (centroids[i], 0, sizeof(float)

{

* dimension);

/* Compute cluster's mean. */
population = 0;
for (3 = 0; J < npoints; j++) {
if (map(j] !'= 1)
continue;
for (k = 0; k < dimension; k++)
centroids[i] [k] += datal[j][k];
population+t+;
}
if (population > 1) {
for (k = 0; k < dimension; k++)
centroids([i] [k] *= 1.0/population;
}
has_changed = 1;
}

memset (dirty, 0, ncentroids * sizeof (int));

int* kmeans (void) {

int i, j, k;
too_far = 0;
has changed = 0;
i (map = calloc(npoints, sizeof(int)))) exit (1)
(dirty = malloc(ncentroids*sizeof (int)))) exit
(centroids = malloc (ncentroids*sizeof (vector t)
for (1 = 0; 1 < ncentroids; i++)

centroids[i] = malloc(sizeof (float) * dimension);
for (i = 0; i < npoints; i++) map[i] = -1;
for (1 = 0; i1 < ncentroids; i++) {

dirty[i] = 1;

j = randnum() % npoints;

for (k = 0; k < dimension; k++)

centroids[i] [k] = datalj] [k];
map([j] = 1i;

exit

}
/* Map unmapped data points. */

for (1 = 0; i < npoints; i++)

if (map[i] < 0) map[i] = randnum() % ncentroids;
do {/* Cluster data. */

populate () ;

compute centroids();
} while (too_far && has_changed);

for (1 = 0; 1 < ncentroids; i++)
free(centroids[i]);

free(centroids) ;

free(dirty);

return map;

10™ Marathon of Parallel Programming — SBAC-PAD — 2015 14

Problem E

Raytracer3

Ray tracing is a well-known technique to generate images. It simulates the light ray in a 3D
scene colliding it with virtual objects and creating the final 2D image. The image represents
the viewport that could be either a camera or a user.

There are two basics algorithms for ray tracing. The forwarding ray tracing creates the image
by traveling the light rays from the source (simulation of photons). This is what really
happens in the real world: from the Sun to your eyes.

The backward ray tracing (also called eye tracing) creates the image simulating a ray from
the source (you eye) to the objects, in a reverse direction from what happens in real life.

Figure E1 shows an example for the backward ray tracing.

Image

Camera / 8 Light Source

% View Ray

Scene Object

Figure E1. The ray-tracing algorithm builds an image by extending rays into a scene.

Write a parallel version for the serial ray tracer that comes with this problem. Be carefully

because the final image must be the same for serial and parallel versions.

Input
The input file contains only one test case. The first line contains the width (0 < W < 7680)

and height (0 < H < 4320) of an image. The second line has two integers: the number of
spheres (0 <.§'<1024) and the number of lights (0 < L < 1024) in the scene.

? The source and description came from http://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-
to-ray-tracing/raytracing-algorithm-in-a-nutshell and https://en.wikipedia.org/wiki/Ray tracing (graphics) .

10™ Marathon of Parallel Programming — SBAC-PAD — 2015 15

The next S lines contain the description of spheres, one per line, as follows: the position Xj,
Y,, and Z, of a sphere (|Xi, |Yi|, |Z,| < 10%), its radius (0 < r; < 10%), the RGB surface color
(0.0 < R,, Gy, By < 1.0), the reflection factor (0.0 < F; < 1.0) and the transparency factor
(0.0<T;<1.0).

The next L lines contain the description of lights, one per line, as follows: the position X;, Y7,
and Z; of a light (Xz|, |Yz|, |Z] < 10%), its radius (0 < r; < 10°), the RGB surface color
(0.0 < Rz, G, Br < 1.0), the reflection factor (0.0 < F; < 1.0), the transparency factor

(0.0 < T < 1.0) and the emission color (C; > 0.0). A light is a specialized sphere.
The input must be read from the standard input.

Output
The output is a text file using PPM format"*.
The output must be written to a file named image.ppm . You can open this image in your

preferred image viewer.

Example

Input

1024 768

31

0.0 0.0 -20.0 4.0 1.0 0.32 0.36 1.0 0.5
5.0 0.0 -25.0 3.0 0.15 0.30 0.97 0.0 0.0
0.0 -10004.0 -20.0 10000.0 0.20 0.20 0.20 0.0 0.0
0.0 20.0 -30.0 3.0 0.0 0.0 0.0 0.0 0.0 3

* More information about this format can be found at http://netpbm.sourceforge.net/doc/ppm.html .

16

10™ Marathon of Parallel Programming — SBAC-PAD — 2015

Vec3f tr

&depth)
floa
cons
for

}

if |
Vec3
Vec3
Vec3
nhit
floa
bool
if |
if

}

else

ace(const
{

t tnear = INFINITY;

t Sphere* sphere = NULL;

Vec3f &rayorig,const Vec3f &raydir,const std::vector<Sphere>

(unsigned i = 0; i < spheres.size(); ++i) {
float t0 = INFINITY, tl = INFINITY;

if
if (t0 < 0) t0 = t1;
if (t0 < tnear) {
tnear = t0;

sphere = &spheres[i

!'sphere) return Vec3f(2);

(spheres[i].intersect (rayorig, raydir, tO0, tl)) {

f surfaceColor = 0; // color of the ray/surfaceof the object intersected by the

f phit = rayorig + raydir * tnear;
f nhit = phit - sphere->center;

.normalize(); // normalize
t bias = le-4; // add some
inside = false;

raydir.dot(nhit) > 0) nhit
(sphere->transparency > 0

normal direction

// point of intersection
// normal at the intersection point

bias to the point from which we will be tracing

= -nhit, inside = true;
|| sphere->reflection > 0)

float facingratio = -raydir.dot (nhit);
float fresneleffect = mix(pow(l - facingratio, 3), 1,
Vec3f refldir = raydir - nhit * 2 * raydir.dot (nhit);

refldir.normalize();

&& depth < MAX RAY DEPTH) {

0.1);

ray

Vec3f reflection = trace(phit + nhit * bias, refldir, spheres, depth + 1);

Vec3f refraction = 0;

if (sphere->transparency) {
float ior = 1.1, eta = (inside) ? ior : 1 / ior; // are we inside or outside the
float cosi = -nhit.dot (raydir);
float k = 1 - eta * eta * (1 - cosi * cosi);
Vec3f refrdir = raydir * eta + nhit * (eta * cosi - sqrt(k));
refrdir.normalize();
refraction = trace(phit - nhit * bias, refrdir, spheres, depth + 1);

}

surfaceColor =

reflection * fresneleffect +

t1))

refraction * (1 - fresneleffect) * sphere->transparency) * sphere->surfaceColor;
{
for (unsigned i = 0; i < spheres.size(); ++i) {
if (spheres[i].emissionColor.x > 0) {
Vec3f transmission = 1;
Vec3f lightDirection = spheres[i].center - phit;
lightDirection.normalize();
for (unsigned j = 0; j < spheres.size(); ++3) {
if (4 t=3) |
float t0, tl;
if (spheres[j].intersect (phit + nhit * bias, lightDirection, tO0,
transmission = 0;
break;

}

surfaceColor += sphere->surfaceColor * transmission *

std::max (float (0),

nhit.dot(lightDirection))

return surfaceColor + sphere->emissionColor;

* spheres[i].emissionColor;

&spheres,const int

surface?

{

void render (Vec3f* image, unsigned width, unsigned height, const std::vector<Sphere> &spheres

{

Vec3f *pixel = image;

float invWidth = 1 / float(width), invHeight = 1 / float (height);
float fov = 30, aspectratio = width / float (height);

float angle = tan(M PI * 0.5 * fov / 180.);

// Trace rays N

for (unsigned y = 0; y < height; ++y) {
for (unsigned x = 0; x < width; ++x, ++pixel) ({
float xx = (2 * ((x + 0.5) * invWidth) - 1) * angle * aspectratio;
float yy = (1 - 2 * ((y + 0.5) * invHeight)) * angle;

Vec3f raydir(xx, yy, -1);
raydir.normalize () ;
*pixel = trace(Vec3f(0), raydir, spheres, 0);

// [comment]

// In the main function, we will create the scene which is composed of some spheres

// and some light (which is also a sphere). Then, once the scene description is complete
// we render that scene, by calling the render() function.

//[/comment]

int main(int argc, char **argv)

{

unsigned width, height;
unsigned s, 1;
scanf ("%u %u\n", &width, &height);
scanf ("%u %u\n", &s, &l);
std::vector<Sphere> spheres;
// spheres
for(int i=0; i<s; i++) {
float x, y, z, r, refl, transp;
scanf ("%f $f %f %Sf ", &x, &y, &z, &r);
Vec3f position(x, y, z);
scanf ("¢f ¢f ¢f ¢f ¢f\n", &x, &y, &z, &refl, &transp);
RGB color(x, y, z);
// position, radius, surface color, reflectivity, transparency, emission color
m@dmhmm.@zmd\vwnwnmvdmﬁmn@omwﬁwo:\ r, color, refl, transp, ec));

}
// lights
for(int i=0; i<1l; i++) {
float x, y, z, r, refl, transp, ec;
scanf ("%f $f %f %Sf ", &x, &y, &z, &r);
Vec3f position(x, y, z);
scanf ("¢f ¢f ¢f ¢f ¢f ¢f\n", &x, &y, &z, &refl, &transp, &ec);
RGB color(x, y, z);
// position, radius, surface color, reflectivity, transparency, emission color
m@dmhmm.@zmd\vwnwnmvdmﬁmn@omwﬁwo:\ r, color, refl, transp, ec));

}
Vec3f *image = new Vec3f[width * height];

render (image, width, height, spheres);
save (image, width, height);
delete image;

return 0;

10™ Marathon of Parallel Programming — SBAC-PAD — 2015 17

Problem F

Karatsuba Multiplication’

There is some different ways to multiply two large numbers. The simplest technique is
learned in school and can be called “brute-force”. In 1962, Karatsuba and Ofman discovered
that a multiplication of two n-digit numbers could be done with a bit complexity of less than

n” using identities the form:
(a+b-10M(c+d-10") =ac+ [(a+ b)(c +d) —ac — bd]-10™ + bd - 10%"
A recursively algorithm for this technique has ©(n'°823) elementary steps.

Write a parallel version for the Karatsuba multiplication for large natural numbers.

Input
The input file contains only one test case. The test case has two natural large numbers, each
one in a different line (0 < 4, B < 10%**).

The input must be read from the standard input.

Output

The output has the multiplication result between those two numbers.

The output must be written to the standard output.

Example

Input Output for the input
1234567890 12193263111263526900
9876543210

> The source and description came from http://mathworld.wolfram.com/KaratsubaMultiplication.html and
http://www.cburch.com/proj/karat/ .

18

10™ Marathon of Parallel Programming — SBAC-PAD — 2015

#define MAX DIGITS 2097152
#define KARAT CUTOFF 4

int a[MAX DIGITS]; // first multiplicand
int b[MAX DIGITS]; // second multiplicand
int r[6 * MAX DIGITS]; // result goes here
int
main() {

int d_a; // length of a

int d_b; // length of b

int d; // maximum length

int i; // counter

getNum(a, &d_a)
getNum(b, &d b)

if(da<0 || db <0) {
printf ("0\n") ;
exit (0);
return 0;

i=(da>db) ?da: db;
for(d = 1; d < i; d *= 2);

for(i = d a; i < d; i++) ali]
for(i = d b; 1 < d; i++) b[i]

karatsuba(a, b, r, d); // compute product w/o regard to carry

doCarry(r, 2 * d); // now do
printNum(r, 2 * d);

return 0;

any carrying

void
karatsuba (int *a, int *b, int *ret, int d) {
int i;
int *ar = &a[0]; // low-order half of a
int *al = ga[d/2]; // high-order half of a
int *br = &b[0]; // low-order half of b
int *bl = &b[d/2]; // high-order half of b
int *asum = &ret[d * 5]; // sum of a's halves
int *psum = &ret[d * 5 + d/2]; // sum of b's halves
int *x1 = gret[d * 0]; // ar*br's location
int *x2 = gret[d * 1]; // al*bl's location
int *x3 = gret[d * 2]; // asum*bsum's location

if(d <= KARAT CUTOFF) {
gradeSchool (a, b, ret, d);
return;

- x2[i];

for(i = 0; 1 <d / 2; i++) |
asum[i] = al[i] + ar[i];
bsum[i] = bl[i] + br[i];
}
karatsuba (ar, br, x1, d/2);
karatsuba (al, bl, x2, d/2);
karatsuba (asum, bsum, x3, d/2);
for(i = 0; i < d; i++) x3[1i] = x3[1i] - x1[i]
for(i = 0; 1 < d; i++) ret[i + d/2] += x3[i];

void
grad
in

fo
fo

void
doCa
in
in

c
fo

}

eSchool (int *a, int *b, int *ret, int d)
t i, 3;

r(i=0; i< 2 *d; i++) ret[i] = 0;
r(i=0; i < d; i++) {

for(j = 0; j < d; j++) ret[i + J] += a[i]

rry(int *a, int d) {

t c;

t i;

= 0;

r(i=0; i < d; i++) {

ali] += c;
if(af[i] < 0) {
c = -(-(ali] + 1) / 10 + 1);
} else {
c =ali] / 10;
}

afi] -= c * 10;

if(c != 0) fprintf(stderr, "Overflow %d\n",

{

c)i

10™ Marathon of Parallel Programming — SBAC-PAD — 2015 19

Problem G

Bitonic Sort®

Bitonic sort is another comparison-based sorting algorithm. It divides the sequence into two

bitonic sequences: given an g; element of a sequence with n elements (i < n):
Ar=a;=...<0i1 =0 201 2 ... 2 Ap2 2 Ap-l
For each generated bitonic sequence, it runs again dividing into more two bitonic sub-

sequences. The algorithm stops when all the elements are in their final position. Figure G1

shows the comparison between numbers and the bitonic sub-sequence for each step.

[T
e

e
—t—ag

SRENISRRSPEYEYS
> 4>] P [[[[
ot [t fep fep fep (et feg I

—> |

>

: t
|

1>

t
l A 4 A A4
A A 4 A 4

SHSRENEHEHENE S

t
|

Figure G1. Bitonic sorting with 16 elements’.

Write a parallel version of the Bitonic Sort algorithm.

Input

The input file contains only one test case. The first line contains the total number of keys (V)
to be sorted (N < 2¥, 0 < k < 30). The following lines contain N keys, each key in a separate
line. A key is a seven-character string made up of printable characters (0x21 to Ox7E —
ASCII) not including the space character (0x20 ASCII).

The input must be read from a file named sort.in

® The source and description came from http://www.tools-of-computing.com/tc/CS/Sorts/bitonic_sort.htm and
https://www.cs.duke.edu/courses/fall08/cps196.1/Pthreads/bitonic.c .
7 Figure from https://en.wikipedia.org/wiki/Bitonic_sorter .

10™ Marathon of Parallel Programming — SBAC-PAD — 2015

Output

The output file contains the sorted keys. Each key must be in a separate line.

The output must be written to a file named sort.out

Example

Input Output for the input
8 1234567
SINAPAD CTDeWIC
SbacPad MPP2015
Wscadl5 SINAPAD
Sinapad SbacPad
1234567 Sinapad
WEAC-15 WEAC-15
CTDeWIC Wscadl5
MPP2015

21

10™ Marathon of Parallel Programming — SBAC-PAD — 2015

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

#define LENGTH 8

FILE *fin, *fout;
char *strings;
long int N;

unsigned long int powersOfTwol[] =

{1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,
65536,131072,262144,524288,1048576,2097152,4194304,8388608,
16777216,33554432,67108864,134217728,268435456,536870912,
1073741824} ;

#define ASCENDING 1
#define DESCENDING O

void openfiles () {
fin = fopen("sort.in", "r+");
if (fin == NULL) {
perror ("fopen fin");
exit (EXIT FAILURE);

fout = fopen("sort.out", "w");
if (fout == NULL) {

perror ("fopen fout");

exit (EXIT FAILURE);

void closefiles(void) {
fclose(fin);
fclose(fout);

void compare (int i, int j, int dir) {
if (dir==(strcmp (strings+i*LENGTH, strings+j*LENGTH) > 0)) {
char t[LENGTH];
strcpy(t, strings+i*LENGTH) ;
strcpy(strings+i*LENGTH, strings+j*LENGTH) ;
strcpy (strings+j*LENGTH, t);

void bitonicMerge (int lo, int cnt, int dir) {
if (cnt>1) {
int k=cnt/2;
int 1i;
for (i=lo; i<lotk; i++)
compare (i, i+k, dir);

bitonicMerge (lo, k, dir);
bitonicMerge (lo+k, k, dir);

void recBitonicSort(int lo, int cnt, int dir) {
if (cnt>1) {
int k=cnt/2;
recBitonicSort(lo, k, ASCENDING);
recBitonicSort(lo+k, k, DESCENDING) ;
bitonicMerge (lo, cnt, dir);

void BitonicSort () {
recBitonicSort (0, N, ASCENDING) ;
int main(int argc, char **argv) {
long int i;
openfiles () ;
fscanf (fin, "%1d", &N);
1f(N > 1073741824 || powersOfTwo[(int)log2(N)] != N) {
printf("%1ld is not a valid number: power of 2 or less than

N) ;
exit (EXIT FAILURE);

strings = (char*) calloc (N, LENGTH) ;
if (strings == NULL) {
perror("malloc strings");
exit (EXIT_FAILURE);

for (1 = 0; 1 < N; i++)
fscanf (fin, "%s", strings + (i * LENGTH)) ;

BitonicSort

for (1 = 0; 1 < N; i++)
fprintf (fout, "%s\n", strings + (i * LENGTH

free(strings);
closefiles

return EXIT SUCCESS;

1073741824!'\n",

