
11th Marathon of Parallel Programming

WSCAD – 2016
October 5th, 2016.

Warmup Rules for Local Contest

For all problems, read carefully the input and output session. For all problems, a sequential

implementation is given, and it is against the output of those implementations that the output

of your programs will be compared to decide if your implementation is correct. You can

modify the program in any way you see fit, except when the problem description states

otherwise. You must upload a compressed file with your source code, the Makefile and an

execution script. The script should have the name of the problem. You can submit as many

solutions to a problem as you want. Only the last submission will be considered. The

Makefile must have the rule all, which will be used to compile your source code before

submit. The execution script runs your solution the way you design it – it will be inspected

not to corrupt the target machine. This script may contain PBS directives, but should not call

qsub or any PBS command.

All Local Teams have access to the target machine during the marathon. Your execution may

have concurrent process from other teams. Only the judges have access to a non-concurrent

environment.

The execution time of your program will be measured running it with time program and

taking the real CPU time given. Each program will be executed at least three times with the

same input and the mean time will be taken into account. The sequential program given will

be measured the same way. You will earn points in each problem, corresponding to the

division of the sequential time by the time of your program (speedup). The team with the

highest points at the end of the marathon will be declared the winner.

This problem set contains 1 problem; pages are numbered from 1 to 2.

11th Marathon of Parallel Programming – WSCAD – 2016 – Warmup 1

Problem A
Harmonic progression sum

The simplest harmonic progression is
1 2, 1 3, 1 4, 1 5, …

Let &' = 1)'
*+, , compute this sum to arbitrary precision after the decimal point.

Input
The input contains only one test case. The first line contains two values: the first is the

number of digits D and the second is the value of N. Consider (1 ≤ D ≤ 105) and

(1 ≤ N ≤ 108).

The input must be read from the standard input.

Output
The output contains only one line printing the value of the sum with exact D precision.

The output must be written to the standard output.

Example

Input

12 7

Output for the input

2.592857142857

11
th

 M
ar

at
ho

n
of

 P
ar

al
le

l P
ro

gr
am

m
in

g
–

W
SC

AD
 –

 2
01

6
–

W
ar

m
up

2

#include <iostream>
#include <sstream>

using namespace std;

void sum(char* output, const long unsigned int d,
const long unsigned int n) {
 long unsigned int digits[d + 11];
 for (long unsigned int digit = 0; digit < d + 11;
++digit) {
 digits[digit] = 0;
 }
 for (long unsigned int i = 1; i <= n; ++i) {
 long unsigned int remainder = 1;
 for (long unsigned int digit = 0; digit < d +
11 && remainder; ++digit) {
 long unsigned int div = remainder / i;
 long unsigned int mod = remainder % i;
 digits[digit] += div;
 remainder = mod * 10;
 }
 }
 for (long unsigned int i = d + 11 - 1; i > 0; --
i) {
 digits[i - 1] += digits[i] / 10;
 digits[i] %= 10;
 }
 if (digits[d + 1] >= 5) {
 ++digits[d];
 }
 for (long unsigned int i = d; i > 0; --i) {
 digits[i - 1] += digits[i] / 10;
 digits[i] %= 10;
 }

 stringstream stringstreamA;
 stringstreamA << digits[0] << ".";
 for (long unsigned int i = 1; i <= d; ++i) {
 stringstreamA << digits[i];
 }
 stringstreamA << '\0';
 string stringA = stringstreamA.str();
 stringA.copy(output, stringA.size());
}

int main() {

 long unsigned int d, n;

 cin >> d >> n;

 char output[d + 10]; // extra precision due to
possible error

 sum(output, d, n);

 cout << output << endl;

 return 0;
}

