
12th Marathon of Parallel Programming

SBAC-PAD & WSCAD – 2017
October 18th, 2017.

Rules for Local Contest

For all problems, read carefully the input and output session. For all problems, a sequential

implementation is given, and it is against the output of those implementations that the output

of your programs will be compared to decide if your implementation is correct. You can

modify the program in any way you see fit, except when the problem description states

otherwise. You must upload a compressed file (zip) with your source code, the Makefile and

an execution script. The script must have the name of the problem. You can submit as many

solutions to a problem as you want. Only the last submission will be considered. The

Makefile must have the rule all, which will be used to compile your source code. The

execution script runs your solution the way you design it – it will be inspected not to corrupt

the target machine.

All Local Teams have access to the target machine during the marathon. Your execution may

have concurrent process from other teams. Only the judges have access to a non-concurrent

environment.

The execution time of your program will be measured running it with time program and

taking the real CPU time given. Each program will be executed at least three times with the

same input and the mean time will be taken into account. The sequential program given will

be measured the same way. You will earn points in each problem, corresponding to the

division of the sequential time by the time of your program (speedup). The team with the

most points at the end of the marathon will be declared the winner.

This problem set contains 5 problems; pages are numbered from 1 to 11.

General information
MPI
You must use aprun -q instead of mpirun inside your scripts:

aprun -q -n <number of process> [-N <process per node] [-d <threads per

process>] <program name>

You have 4 nodes with 2x18 cores. Examples:

144 processes automatically distributed between all 4 nodes

aprun -q -n 144 ./hello

72 process, 18 processes per node, 4 nodes

aprun -q -n 72 -N 18 ./hello

32 process, 8 processes per node, each process runs 2 OpenMP threads

OMP_NUM_THREADS=2 aprun -q -n 32 -N 8 -d 2 ./hello

Compilation
You must use CC or CXX inside your Makefile. Do not redefine them! Example:

FLAGS=-O3
EXEC=sum

all: $(EXEC)

$(EXEC):
 $(CXX) $(FLAGS) $(EXEC).cpp -c -o $(EXEC).o
 $(CXX) $(FLAGS) $(EXEC).o -o $(EXEC)

Test machine (for local teams)
See the URL

https://wickie.hlrs.de/platforms/index.php/CRAY_XC40_Using_the_Batch_System to learn

how to use the batch system at CRAY XC40.

12th Marathon of Parallel Programming – SBAC-PAD & WSCAD – 2017 1

Problem A
Transitive Closure

Let G = (V, E) be an unweighted graph defined as a finite set V of nodes and a set E of edges,

which are pairs of nodes. Given a directed graph G and two nodes s, v ∈ V, the reachability

problem is related to find out whether there is a path from s to v. The generalization of the

reachability problem is called Transitive Closure problem (TC). The solution of every

reachability problem applied to a distinct vertex of a graph is the transitive closure of the own

graph.

The transitive closure is based on finding if a vertex s is reachable from another vertex v for

all vertex pairs (s, v). Thus, the transitive closure of a graph G is a graph that contains an edge

(s, v) whenever there is a directed path from s to v in G. The transitive closure problem can be

solved by different graph algorithms that use several techniques, such as: search algorithms,

shortest paths algorithms, algorithms that find out strongly connected components of a graph

and so on.

Create a parallel version of an algorithm that generates the transitive closure of a given graph.

Input
The input follows the GTgraph format. The lines starting with “c” are comment lines

containing information about the graph. The problem line, starting with “p”, is unique and

must appear as the first non-comment line. This line has the format “p sp n m”, where n and

m are the number of nodes and the number of arcs (edges), respectively. Arc descriptors are

of the form “a U V W”, where U and V are the tail and the head node ids, respectively, and W

is the arc weight.

The input must be read from the standard input.

Output
The output must have only the adjacency matrix. Columns separated by white space and each

line ending with a newline (“\n”).

The output must be written to the standard output.

12th Marathon of Parallel Programming – SBAC-PAD & WSCAD – 2017 2

Example

Input

c FILE : graph_5.gh
c No. of vertices : 5
c No. of directed edges : 9
c Max. weight : 1
c Min. weight : 1
c A directed arc from u to v of weight w
c is represented below as ' a u v w '
p sp 5 9
a 1 3 1
a 1 4 1
a 1 5 1
a 2 5 1
a 3 1 1
a 3 2 1
a 3 5 1
a 4 1 1
a 5 4 1

Output for the input

0 0 1 1 1
0 0 0 0 1
1 1 0 0 1
1 0 0 0 0
0 0 0 1 0

12th Marathon of Parallel Programming – SBAC-PAD & WSCAD – 2017 3

Problem B
Eternity II

The Eternity II puzzle1 was released in 2007 with the promise to pay $2 million to the first

person to present a complete solution. However, up until today no correct solution was

presented and the prize remains unclaimed.

Eternity II is a classic edge-matching puzzle which involves placing 256 square tiles into a

16´16 grid. Each tile has its edges marked with different shape/color combinations (which

we will simply call color here). The tiles must be placed in such a way that all the colors on

their edges precisely match the colors of the adjacent tiles. The borders of the grid are a

special case and match only tiles with gray edges. Tiles can be rotated; therefore, each tile has

4 possible placements for each grid position. There are 22 colors, not including the gray

edges. On the original puzzle, the center tile is pre-determined and some tile positioning hints

are given.

Figure B1. On the left, a set of tiles for a 4´4 puzzle. On the right the solved puzzle. Notice

how this solution rotates some of the tiles.

This puzzle was designed to be difficult to solve by brute-force computer search, and remains

intractable on its original configuration. Indeed, the number of possible configurations

1 The game description was adapted from https://en.wikipedia.org/wiki/Eternity_II_puzzle

1 20 3

54 7

9 108 11

13 1412 15

9

6

0 3

11

12

1013

5 48 12

714 15

9

6

(a) (b)

12th Marathon of Parallel Programming – SBAC-PAD & WSCAD – 2017 4

(assuming all the pieces are distinct, and ignoring the fixed pieces and tile positioning hints)

is 256! ´ 4256 roughly $1.15 ´ 10661. A tighter upper bound can be obtained taking into

account the fixed tile in the center and the positioning hints yielding a search space of

3.11 ´ 10545.

Since this competition must end before the end of the universe, here we will deal which much

smaller instances of the same problem. However, to keep things interesting we will not

provide any hints or tiles with predefined positions. The puzzle grid size, number of colors

and tiles will be given through the standard input and the solution should be presented using

the standard output.

You were given a sequential version of a solver which uses a naïve brute-force backtracking

method. Your task is to write a parallel version of this code. Feel free to use any heuristic or

method to improve the performance of the sequential version. Notice, however, that it might

be the case that a single input has multiple distinct correct solutions. This will not be a

problem as long as the solution provided by your code is correct since the automated

evaluation system already takes this into consideration.

Input
Each input contains one puzzle. It consists of a list of integers separated by spaces and new

lines. The first line contains 2 integers: the grid size g and the number of colors c. The next g2

lines list the tiles. The order of the tiles is important (it will be used for the output) and is

counted from 0, thus tiles are numbered from 0 to g2 – 1. Each tile is given by 4 integers

between 0 and c – 1 describing the colors of its edges in clockwise order, starting from the

top edge. The color 0 (gray) is considered to be a special case: the only acceptable color for

the borders. The example input below represents the input tiles shown in Figure B1(a) You

may assume g ≤ 16 and c ≤ g.

The input must be read from the standard input.

Output
The expected output must have g2 lines, each one representing one of the cells of the grid.

The order of the lines follows the grid from left to right, top to bottom. Each line is composed

by 2 integers, the first indicates the tile number, and the second the number of clockwise

12th Marathon of Parallel Programming – SBAC-PAD & WSCAD – 2017 5

rotations needed for that tile. The expected output corresponding to the solution presented in

Figure B1(b) is shown in the next section.

The output must be written to the standard output.

Example

Input

4 5
0 1 2 0
0 0 2 1
1 0 0 1
2 0 0 2
3 4 3 3
4 4 4 3
4 4 3 3
4 4 3 3
2 4 2 0
1 4 1 0
1 4 2 0
2 4 1 0
2 3 2 0
1 3 1 0
2 3 1 0
1 3 2 0

Output for the input

0 0
9 1
11 1
3 3
8 0
5 2
4 3
12 2
14 0
6 0
7 2
15 2
2 1
13 3
10 3
1 1

12th Marathon of Parallel Programming – SBAC-PAD & WSCAD – 2017 6

Problem C
Mandelbrot Set

The Mandelbrot set is the set of complex numbers c for which the function 𝑓" 𝑍 = 𝑍% + 𝑐

does not diverge when iterated from 𝑍 = 0, i.e., for which the sequence 𝑓" 0 ,	𝑓" 𝑓" 0 , etc.,

remains bounded in absolute value. Its definition and name are due to Adrien Douady, in

tribute to the mathematician Benoit Mandelbrot. The set is connected to a Julia set, and

related Julia sets produce similarly complex fractal shapes. The Mandelbrot set is the set of

values of c in the complex plane for which the orbit of 0 under iteration of the quadratic map

𝑍*+, = 𝑍*% + 𝑐

remains bounded. That is, a complex number c is part of the Mandelbrot set if, when starting

with 𝑍- = 0 and applying the iteration repeatedly, the absolute value of 𝑍* remains bounded

however large n gets.2

Create a parallel version of the given sequential algorithm3 that generates a textual approach

for the Mandelbrot set.

Input
The first line informs the maximum number of rows. The second line presents the maximum

number of columns. Finally, the last one informs the number of iterations.

The input must be read from the standard input.

Output
Textual representation of the Mandelbrot set.

The output must be written to the standard output.

2 Text from Wikipedia: https://en.wikipedia.org/wiki/Mandelbrot_set
3 Code adapted from http://www.fractalforums.com/programming/mandelbrot-with-only-18-lines-of-cplusplus-
code!/

12th Marathon of Parallel Programming – SBAC-PAD & WSCAD – 2017 7

Example

Input

23
79
24

Output for the input

12th Marathon of Parallel Programming – SBAC-PAD & WSCAD – 2017 8

Problem D
K-Means Clustering

K-Means clustering is a method that allows the modeling of probability density functions by

the distribution of prototype vectors and is popular for cluster analysis in data mining. The

method will partition a set of n observations (points) into k clusters, where each point will be

associated with the cluster with the nearest mean. The Euclidean distance is usually the

adopted metric for proximity.

Clustering is a NP-hard problem, but there are efficient heuristic algorithms that can quickly

to a local optimum. In this implementation, the application takes as input the coordinates

(3D) of k initial centroids and a set of data points. K-Means performs an iterative process,

where points are re-clustered according to the minimum Euclidean distance between them

and the centroids. Next, the centroid of each partition is recalculated taking the mean of all

points in the partition, and the whole procedure is repeated until no centroid is changed and

no points are assigned to another cluster. Upon completion, the algorithm returns the

coordinates of the final k centroids.

(a) initial centroids (b) re-clustered centroids

Figure D1. K-Means example with 3 centroids and 1,000 points on ℝ/.

Figure D1 provides an example of K-Means in with 3 centroids and 1,000 points on ℝ/.

Figure D1(a) shows the initial position of the centroids (big points in red, green and blue),

while Figure D1(b) shows the final position of the centroids and points associated with each

cluster (with the same color of their respective centroids).

12th Marathon of Parallel Programming – SBAC-PAD & WSCAD – 2017 9

Write a parallel version of the given sequential program. We are not interested in other

clustering methods; hence you should not change this aspect of the application.

Input
The first two lines with contain the number of centroids k and the number of points n. The

next k+n lines will contain (x, y, z) coordinates for k centroids and n points, respectively.

The input must be read from the standard input.

Output
The program will print k lines containing (x, y, z) coordinates of the re-clustered k centroids.

The output must be written to the standard output.

Example

Input

3
9
-2.0 0.0 1.5
1.0 1.0 1.0
-1.0 -1.0 0.0
-1.2 0.6 0.8
1.5 0.5 1.8
0.5 -1.0 0.8
-0.5 1.2 0.7
1.0 1.5 -0.8
-1.2 0.2 0.5
0.2 1.0 0.2
-0.2 -1.0 1.8
0.5 -1.5 1.5

Output for the input

-0.97 0.67 0.67
 0.90 1.00 0.40
 0.27 -1.17 1.37

12th Marathon of Parallel Programming – SBAC-PAD & WSCAD – 2017 10

Problem E
Shortest Superstring

The shortest superstring problem belongs to the NP-Hard class and is defined as follows:

given a set of strings S where no element is substring of another element, find the shortest

string s that contains each string in S as substring. Formally, let S = {s1, s2, …, sn} be a set of

strings such that

∀𝑠2, 𝑠4 ∈ 𝑆 𝑠2 ⊈ 𝑠4.

Thus, the shortest substring problem is to find a string

𝑠 ∈ 𝑆′ = 𝑠′ ∀𝑠2 ∈ 𝑆 𝑠2 ⊆ 𝑠′ such that ∀𝑠′ ∈ 𝑆′ 𝑠 ≤ 𝑠′ .

For instance, consider the following set of strings:

S = {CATGC, CTAAGT, GCTA, TTCA, ATGCATC}.

The shortest string that contains all the above strings as a substring is

s = GCTAAGTTCATGCATC.

The proposed solution employs a greedy strategy over an operation called “overlap”,

described next.

The overlap operation over strings a and b is their concatenation ab where the matching parts

in the suffix of a and the prefix of b are merged. For instance, if a = {ABC} and b = {BCDE},

the left overlap of a and b is {ABCDE}. The overlap value of the operation is the size of the

corresponding suffixes/prefixes of both strings. In the example, the overlap value is 2 (BC).

Order matters; the overlap operation and its respective overlap value are not commutative.

With the overlap operation defined we can now show the greedy algorithm that solves the

problem at hand. Its idea is simple; at each step, we replace the two strings whose resulting

overlap value would be the highest by the result of their overlap. At the end, we have the

shortest superstring:

1. Let T be a copy of S.

2. While |T| > 1 do:

a. let a and b be the two strings that yield the highest overlap value;

12th Marathon of Parallel Programming – SBAC-PAD & WSCAD – 2017 11

b. pop a and b from T and insert the string obtained by overlapping a and b.

Now the only element of T is the shortest superstring containing as substrings all strings of S.

It is important to notice the overlap of strings x and y is probably not the same as the overlap

of strings y and x because of the its aforementioned lack of commutativity. Thus, both

configurations must be evaluated for each pair of strings taken into account and its order

preserved.

You shall submit a parallel implementation of an algorithm that solves the shortest

superstring problem.

Input
The first line contains the number n of strings to be read and processed. Each of the following

n lines of the input contains a string at most 256 ASCII characters. All the characters are

readable and there are no blanks.

The input must be read from the standard input.

Output
It is a single line containing the shortest superstring that contains all strings from the input.

The output must be written to the standard output.

Example

Input

5
CATG
CTAAGT
GCTA
TTCA
ATGCATC

Output for the input

GCTAAGTTCATGCATC

