
13th Marathon of Parallel Programming

WSCAD 2018
October 2nd, 2018

Rules for Local Contest

For all problems, read carefully the input and output session. A sequential imple-
mentation is given, and it is against the output of those implementations that the
output of your programs will be compared to decide if your implementation is cor-
rect. You can modify the program in any way you see fit, except when the problem
description states otherwise.

You must upload a compressed file (zip) with your source code, the Makefile
and an execution script. The script must have the name of the problem. You can
submit as many solutions to a problem as you want. Only the last submission will
be considered. The Makefile must have the rule all, which will be used to compile
your source code. The execution script runs your solution the way you design it –
it will be inspected not to corrupt the target machine.

All Teams have access to the target machine during the marathon. Your execu-
tion may have concurrent process from other teams. Only the judges have access to
a non-concurrent environment.

The execution time of your program will be measured running it with time
program and taking the real CPU time given. Each program will be executed at
least three times with the same input and the mean time will be taken into account.
The sequential program given will be measured the same way. You will earn points
in each problem, corresponding to the division of the sequential time by the time of
your program (speedup). The team with the most points at the end of the marathon
will be declared the winner.

13th Marathon of Parallel Programming – WSCAD 2018 2

General Information

Execution

You should use any necessary commands inside your scripts. For instance:

export OMP_NUM_THREADS=10

./sum

Note that it reads the default input (stdin), and can write to the default output
(stdout).

Compilation

You must use CC or CXX inside your Makefile. Do not redefine them! Example:

FLAGS=-O3

EXEC=sum

all: $(EXEC)

$(EXEC):

$(CXX) $(FLAGS) $(EXEC).cpp -c -o $(EXEC).o

$(CXX) $(FLAGS) $(EXEC).o -o $(EXEC)

Test machine

Check the contest website for more information.

13th Marathon of Parallel Programming – WSCAD 2018 3

Problem A
Average minimum distance

Given a directed weighted graph G = (V,E,w) with V the set of vertices, E the
set of edges (ordered pairs of vertices), and w : E → N ∈ [1, |V |[the weight of the
edges, we want to compute its average minimum distance (AMD) between all pairs
of vertices with a path connecting them.

The average minimum distance equation is

AMD(G) =

∑
v∈V

∑
u∈V ∧v1 6=v2∧p(v,u) md(v, u)∑

v∈V
∑

u∈V ∧v 6=u∧p(v,u) 1
(1)

where the function md : V × V → N provides the minimum distance between
two vertices with an existing path between them and the function p : V × V →
{true,false} informs if there exists a path from one vertice to another (v to u in
Equation 1).

Input

The input contains only one test case read from a file.
The first line contains two values: the first is the number of vertices |V | and the

second is the number of edges |E|.
The other lines contain three values: two vertices (whose ids are in the interval

[0, |V |[) composing an edge and the weight of said edge (in the interval [1, |V |[).
The number of vertices will never be bigger than 5000.

Output

The output contains only one line printing the average minimum distance truncated
to an integer.

Example
Input file Output
10 7 7
0 4 3
4 7 4
4 8 6
7 0 7
7 4 1
8 3 8
9 3 2

13th Marathon of Parallel Programming – WSCAD 2018 4

Problem B
Levenshtein Distance

The Levenshtein Distance, named after the Soviet mathematician Vladimir Lev-
enshtein, is a metric for measuring the difference between two strings. The differ-
ence between two strings is the minimum number of single-character edits required
to change one string into the other. A single-character edit is either an insertion,
deletion, or substitution one one character in a string.

The Levenshtein Distance between two strings a and b (with respective lenghts
|a| and |b|) is leva,b(|a|, |b|), where

leva,b(i, j) =

max(i, j) if min(i, j) = 0,

min

leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + 1(ai 6=bj)

otherwise.
(2)

where 1(ai 6=bj) equals 0 when ai = bj and 1 otherwise. Thus, leva,b(i, j) may be inter-
preted as the distance between the first i characters of a and the first j characters
of b.

You shall parallelize a sequential algorithm that computes the Levenshtein Dis-
tance between two strings. The provided sequential algorithm is a recursive imple-
mentation following the mathematical definition presented above. Its inputs are the
compared strings and its output is an integer, which is the Levenshtein distance
separating the two strings.

The Levenshtein distance between “chicken” and “kicking” is 4, since the following
four single-character edits change one into the other, and there is no way to do it
with fewer than four edits:

1. chicken → hicken (removes first letter);

2. hicken → kicken (replaces first letter);

3. kicken → kickin (replaces second to last letter);

4. kickin → kicking (inserts last letter).

Input

The input must be read from standard input. It is composed of two lines, each of
them an input string.

13th Marathon of Parallel Programming – WSCAD 2018 5

Output

The output must be written to standard output. It is an output integer indicating
the computed distance.

Example

Input Output

chicken 4
kicking

13th Marathon of Parallel Programming – WSCAD 2018 6

Problem C
Himeno Benchmark

The Himeno benchmark was developed by Dr. Ryutaro Himeno in 1996 at the
RIKEN Institute in Japan. It is highly memory intensive, bound by memory band-
width on modern processors, in contrast to the highly compute intensive Linpack.

The Himeno benchmark focuses on the solution of a 3D Poisson equation in
generalized coordinates on a structured curvilinear mesh. With the processing time
dominated by the Poisson solution, it makes the Poisson procedure a good measure
of overall performance. Using finite differences, the Poisson equation is dicretized
in space yielding a 19-point stencil.

Your task is to improve performance of the source-code using parallel strategies.

Input

The input file contains only one test case. The first three lines contain the size of a
matrix imax, jmax and kmax (0 < N ≤ 104). Next, nn is the number of iterations.

The input must be read from the standard input.

Output

The output must be the Gosa number that is the residual to measure convergence.
It must have 6 (six) digits of precision.

The output must be written from the standard input.

Example

Input Output

64 0.003069
64
128
10

13th Marathon of Parallel Programming – WSCAD 2018 7

Problem D
Cholesky Decomposition1

Every symmetric, positive matrix A can be decomposed into a product of an
unique lower triangular matrix L and its transpose:

A = LLT (3)

L is called the Cholesky factor of A, and can be interpreted as a generalized square
root of A.

Your task is to improve performance of the source-code using parallel strategies.
We are not interested in finding out which decomposition is better, therefore is not
allowed to change the Cholesky decomposition algorithm.

Input

The input file contains only one test case. The first line contains the size of a square
matrix (0 < N ≤ 104). Next, N lines are the rows of the matrix, N real numbers
per row.

The input must be read from a file named cholesky.in.

Output

The output must have the lower Cholesky factor L from the symmetric matrix A.
The output must be written to a file named cholesky.out.

Example

Input Output

4 2.20004 0.39438 0.78310 0.79844
4.84019 0.39438 0.78310 0.79844 0.17926 2.04094 0.33522 0.76823
0.39438 4.19755 0.33522 0.76823 0.35595 0.13298 2.08159 0.62887
0.78310 0.33522 4.47740 0.62887 0.36292 0.34453 0.21804 2.14901
0.79844 0.76823 0.62887 4.91620

1Source: https://rosettacode.org/wiki/Cholesky_decomposition

13th Marathon of Parallel Programming – WSCAD 2018 8

Problem E
Mandelbrot Set

The Mandelbrot set is the set of complex numbers c for which the function
fc(Z) = Z2 + c does not diverge when iterated from Z = 0, i.e., for which the
sequence fc(0), fc(fc(0)), etc, remains bounded in absolute value. Its definition and
name are due to Adrien Douady, in tribute to the mathematician Benoit Mandelbrot.
The set is connected to a Julia set, and related Julia sets produce similarly complex
fractal shapes. The Mandelbrot set is the set of values of c in the complex plane for
which the orbit of 0 under interation of the quadratic map

Zn+1 = Z2
n + c (4)

remains bounded. That is, a complex number c is part of the Mandelbrot set if,
when starting which Z0 = 0 and applying the iteration repeatedly, the absolute
value of Zn remains bounded however large n gets.

Create a parallel version of the given sequential algorithm that generates a tex-
tual approach for the Mandelbrot set.

Input

The first line informs the maximum number of rows. The second line presents the
maximum number of columns. Finally, the last one informs the number of iterations.

The input must be read from the standard input.

Output

Textual representation of the Mandelbrot set.
The output must be written to the standard output.

13th Marathon of Parallel Programming – WSCAD 2018 9

Example
Input Output
23
79
240

...

...#.......................

..########.....................

..##########...................

.....................................#......##.###############...#.............

.....................................###############################.####......

....................................###################################........

..................................#######################################......

............#......##..........##....

.............##############....##..

..........###################.##.#...

.....##......

.....##......

..........###################.##.#...

.............##############....##..

............#......##..........##....

..................................#######################################......

....................................###################################........

.....................................###############################.####......

.....................................#......##.###############...#.............

..##########...................

..########.....................

...#.......................

