14™ Marathon of Parallel Programming
SBAC-PAD & WSCAD - 2019

October 17", 2019,

Rules for Local Contest

For all problems, read carefully the input and output session. For all problems, a sequential
implementation is given, and it is against the output of those implementations that the output
of your programs will be compared to decide if your implementation is correct. You can
modify the program in any way you see fit, except when the problem description states
otherwise. You must upload a compressed file (zip) with your source code, the Makefile and
an execution script. The script must have the name of the problem. You can submit as many
solutions to a problem as you want. Only the last submission will be considered. The
Makefile must have the rule all, which will be used to compile your source code. The
execution script runs your solution the way you design it — it will be inspected not to corrupt
the target machine.

All Local Teams must use the computers that the organization provides. Only the judges have
access to the judge machine.

The execution time of your program will be measured running it with time program and
taking the real CPU time given. Each program will be executed at least three times with the
same input and the mean time will be taken into account. The sequential program given will
be measured the same way. You will earn points in each problem, corresponding to the
division of the sequential time by the time of your program (speedup). The team with the
most points at the end of the marathon will be declared the winner.

This problem set contains 6 problems; pages are numbered from 1 to 17.

14™ Marathon of Parallel Programming — SBAC & WSCAD — 2019 i

General iInformation

Compilation
You must use CC or CXX inside your Makefile. Be careful when redefining them! There is a

simple Makefile inside you problem package that should be modified. Example:

FLAGS=-03
EXEC=sum
CXX=icpc

all: $(EXEC)
S (EXEC) :

$ (CXX) S$(FLAGS) $(EXEC).cpp -c -0 $(EXEC).o
S (CXX) $(FLAGS) $(EXEC).o -o $(EXEC)

Running
You must have an execution script that has the same name of the problem. This script runs
your solution the way you design it. There is a simple script inside you problem package that

should be modified. Example:

$ cat A

#!/bin/bash

This script runs Problem A
export OMP_NUM THREADS=32
mpiexec -n 32 ./sum

. /sum

Measure the execution time of your solution using time program. Add input/output
redirection when collecting time. Use diff program to compare the original and your solution

results. Example:

$ time -p ./A < original input.txt > my output.txt
real 4.94
user 0.08
sys 1.56

$ diff my output.txt original output.txt

$

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019 1

Problem A
Maximum Sum Subsequence

Given an array sequence [A;1, Az ...Aq], where n is the total amount of integer values (also the
array size), this implementation aims to find the maximum possible sum of increasing

subsequence S of length k such that S; <S, <S3<S4<.... < Sk

Input

The input set contains only one test case. The first line contains one value: the array size
(which is also the amount of elements to be read). The second line contains the length of the
subsequence S, represented by k. Then, the last line contains a list of the elements to be
inserted into the array (note that the number of elements must be equal to the array size).

The input must be read from the standard input.

Output
The output contains only one line printing the maximum possible sum of increasing
subsequence S.

The output must be written to the standard output.

Example

Input example 1 Output example 1
8 40
3

859105 6 21 8

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019

int MaxIncreasingSub(int arr[], int n, int k)

{

int **dp, ans = -1;

dp = new int *[n];

for(int i=0; i < n; i++)
dp[i] = new int[k+1];

for(int i = 0; i < n; i++){
for(int j = 0; j < k; j++){
dp[i][3j] = -1;
¥
}

for (int i = 0; 1 < n; i++) {
dp[i][1] = arr[i];
}
for (int i = 1; 1 < n; i++) {
for (int j = 0; j < i; j++) {
if (arr[j] < arr[i]) {
for (int 1 = 1; 1 <=k - 1; 1++) {
if (dp[j1[1] != -1) {
dp[i][1l + 1] =
max(dp[i][1 + 1],dp[j][1] + arr[i]);
¥

for (int i = @; 1 < n; i++) {
if (ans < dp[i][k])
ans = dp[i][k];

return (ans == -1) ? @ : ans;

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019 3

Problem B
Brute-Force Password Cracking

One way to crack a password is through a brute-force algorithm, which tests all possible
combinations of a password exhaustively until it finds the correct one.

A common practice in security systems is to store the hash of user passwords (instead of the
plan text). Hashes map a given x (the password) with variable length N to a given y = hash(x)
with a fixed length M, following specific security properties. One of them is: you cannot
obtain the value of x from the value of y. In a security system, y is stored instead of x and the
comparison is performed directly between the hash of attempted password x” and the stored
y = hash(x).

Examples of hash algorithms are MD5 and SHA. For MD5 algorithm, the fixed length of the
hash(x) is 128 bits usually presented as 32-hexadecimal characters.

This problem considers the cracking of MD5-hashed password by trying exhaustively all the
combinations of possible characters (uppercase and lower-case letters and numeric symbols)
and comparing pairs of MD5 hashes. That is, for all combinations of characters x,
hashMD5(x) = hashMD5(x ’;)?

Input

An input consists of only one case of test. The single line contains a string with 32-
hexadecimal characters representing the value of MD5 hash of the password to be cracked.
Consider that the possible passwords used to generate the hashes have the length N, with
1<N<10.

The input must be read from the standard input.

Output
The output is a single line that contains the password value found.

The output must be written to the standard output.

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019

Example

Input example 1 Output example 1

7a95b£926a0333£57705aeac07a362a2 found: PASS

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019

void print_digest(byte * hash){
int x;

for(x = ©; X < MD5_DIGEST_LENGTH; X++)
printf("%02x", hash[x]);
printf("\n");

*

* This procedure generate all combinations of possible
letters

*/

void iterate(byte * hashl, byte * hash2, char *str, int idx,
int len, int *ok) {

int c;

// 'ok' determines when the algorithm matches.
if(*ok) return;
if (idx < (len - 1)) {

// Iterate for all letter combination.

for (c = 9; c < strlen(letters) && *ok==0; ++cC)

{
str[idx] = letters[c];
// Recursive call
iterate(hashl, hash2, str, idx + 1, len,
ok);
}
} else {
// Include all last letters and compare the
hashes.
for (c = ©; c < strlen(letters) && *ok==0; ++cC)
{

str[idx] = letters[c];

MD5((byte *) str, strlen(str), hash2);
if(strncmp((char*)hashl, (char*)hash2,
MD5 DIGEST LENGTH) == 0){

printf("found: %s\n", str);

*ok = 1;

*

* Convert hexadecimal string to hash byte.
*/

void strHex_to_byte(char * str, byte * hash){
char * pos = str;

int i;

for (i = @; i < MD5_DIGEST_LENGTH/sizeof *hash; i++) {
sscanf(pos, "%2hhx", &hash[i]);
pos += 2;

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019 6

Problem C
HopByte

The HopByte metric measures how much data has to travel through a network (hops x bytes).
For an application executed in a parallel platform with a specific mapping of processes to
processors, we can compute the HopByte metric as the sum (for all pairs of processes) of the
product of the number of bytes exchanged by the distance (number of network hops) between
the processors where the processes are mapped.

For our specific case, consider:

e The application as a directed weighted graph G = (V, E, w) with V the set of vertices
(processes), E the set of edges (ordered pairs of vertices, or communication between
processors), and w: E — N+ the weight of the edges (number of bytes sent from one
process to the other).

e The parallel platform as a set of processors P. The network topology of the platform is
organized as a tree with height h, where the leaves represent P and the nodes in each
level have the same number of children. The distance between processors (in number
of hops) is computed as d: P x P — N.

e The mapping of the application processes to processors as d: V — P.

In this case, the HopByte (HB) metric is computed as:

HB = " d(8(),8())w(i.))

i,jev

Input

The input has three sections to be read with no separation (whitespace, new line, etc).

The first section represents the application. Its first line contains two values: the first is the
number of vertices (processors) |V| and the second is the number of edges (communication
between processors) |E|. The other |E| lines contain three values: two vertices (whose ids are
in the interval [0, |[V|[) composing an edge and the weight of said edge.

The second section represents the network topology of the parallel platform (as a tree). Its

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019 7

first line contains two values: the first is the number of leaves in the tree (processors) |P| and
the second is the height of the tree h. The other h-1 lines contain a single value representing
the number of children each node of that level has (number of children of the root node,
number of children of the children of the root node, etc.).

The third section represents the mapping of processes to processors. The first line contains
two values: the first is the number of processes |V| and the second is the number of processors
|P|. The following V lines contain the id of a process in the interval [0, |V|[and the id of the
processors where it is mapped in the interval [0, | P|[.

The input must be read from the standard input.

Output

The output contains only one line printing the computed HopByte metric.

The output must be written to the standard output.

Example

Input example 1 Output example 1

560
40
20
30
50

NP OWwWWNOYNRERFPOW
Wk DN O D

w = 0o

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019

/* Computes the number of hops between two leaf nodes in the
topology */
uint32_t find_hops(uint32_t first_node, uint32_t second_node,
uint32_t** topology, uint32_t height){
// Number of levels searched to find the common parent
(or common node)
uint32_t common_level = 0;
uint32_t current_level = height-1;
// If the nodes are different, searches for their common
parent
while(first_node != second_node){
// Move one level closer to the root
first_node = topology[current_level][first_node];
second_node = topology[current_level][second_node];
++common_level;
--current_level;
¥
//In a tree, we have two hops for each level that we go
in the direction of the root
return common_level*2;

/* Computes the hopbyte metric for the mapping */

uint64_t hopbyte(uint32_t* mapping, uint32_t* application,
uint32_t processes, uint32_ t** topology, uint32_t height){
uinté4_t total = 0;

uint32_t i, j, bytes, hops;
//For all pairs of processors
for(i = @; i < processes; ++i){
for(j = @; j < processes; ++j){
//Gets the number of bytes sent from i to j
bytes = application[i*processes+j];
//Gets the number of hops between the processors
where i and j are mapped
hops = find_hops(mapping[i], mapping[j],
topology, height);

//Adds their product to the hopbyte total
total+= bytes*hops;

return total;

// Main program - reads input, computes hopbyte,
output
int main (int argc, char* argv[]){

prints

uint32_t *application, **topology, *mapping;
uint32_t processes, processors, height;

//Tries to read the first input (application)
application = read_application(&processes);
//Tries to read the second input (topology)
topology = read_topology(&processors, &height);
//Tries to read the third input (mapping)
mapping = read_mapping(processes, processors);

//Computes and outputs the hopbyte metric of the mapping
printf("%lu\n",hopbyte(mapping, application, processes,
topology, height));

return 0;

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019 9

Problem D
Galaxy Simulator

From Wikipedia:
Newton’s law of universal gravitation states that every particle attracts
every other particle in the universe with a force which is directly
proportional to the product of their masses and inversely proportional

to the square of the distance between their centers

The Newton's law leads up to a O(n®) time complexity algorithm, since the force of every
particle must act upon all other particles, when one try to simulate a particle system. Such
algorithm is too much slow to simulate a large number of particles, such as galaxies that are
commonly composed of billions of stars. As an example, the Milky Way galaxy alone is
supposed to have between 100 and 400 billion stars.

Barnes-Hut' came up with O(n log n) time complexity algorithm that enables one to
approximate particle interaction by assuming that nearby bodies, a group, work as a single
large fictitious body in the center of mass of the group. For a 2D galaxy simulation (where all
stars share the same plane), the Barnes-Hut algorithm divides the space in four quadrants.
Depending on the number of stars, each quadrant can be divided again in four quadrants, and
so on. A tree data structure is used to keep all information: each node has four children, each
one to represent a quadrant of the two dimensional space associated with the node. The
particle interaction uses that tree data structure to compute approximations by considering the

center of mass of each quadrant.

Input

An input represents only one test case. The first line contains one integer value N that
represents the number of stars. Each one of the following N lines contains five floating-point
values that describe the mass, the plane position (x, y) and the plane velocity (u, v) of each

star. The last line contains the number of time steps that is used into this galaxy simulation.

1Josh Barnes and Piet Hut. A hierarchical o (n log n) force-calculation algorithm. Nature, 324(6096):446, 1986.

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019 10

The input must be read from the standard input.

Output

The output contains two lines: the first line contains the total vector velocity (u, v)

considering all stars, in both dimensions; and the second line contains the center (x, y) of

mass considering all stars.

The output must be written to the standard output.

Example
Input Output for the input
3 -13.109914 -6.611076

1.000000 0.334531 0.532345 -5.192624 -6.640964
1.000000 0.558670 0.453306 3.576856 1.123553
1.000000 0.573755 0.553912 -4.322105 1.478229
1000

0.509590 0.580083

11

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019

void time_step(void) {

//Allocate memory for root

root = malloc(sizeof(struct node_t));

set_node(root);

root->min_x = @; root->max_x = 1; root->min_y = @; root->max_y = 1;

//Put particles in tree
for(int i = @; 1 < N; i++) {
put_particle_in_tree(i, root);

}

//Calculate mass and center of mass
calculate_mass(root);
calculate_center_of_mass_x(root);
calculate_center_of_mass_y(root);

//Calculate forces
update_forces();

//Update velocities and positions
for(int i = @; 1 < N; i++) {
double ax = force_x[i]/mass
double ay = force_y[i]/mass
u[i] += ax*dt;
v[i] += ay*dt;
x[1] += u[i]*dt;
y[i] += v[il*dt;

[i];
[il;

/* This of course doesn't make any sense physically,
* but makes sure that the particles stay within the
bounds. Normally the particles won't leave the

* area anyway.

*/

bounce(&x[i], &y[i], &u[i], &v[i]);

*

}

//Free memory
free_node(root);
free(root);
i
\void put_particle_in_tree(int new_particle, struct node_t *node) {
//If no particle is assigned to the node
if(!node->has_particle) {

node->particle = new_particle;

node->has_particle = 1;
3
//1f the node has no children
else if(!node->has_children) {

//Allocate and initiate children

node->children = malloc(4*sizeof(struct node_t));

for(int i = @; i < 4; i++) {

set_node(&node->children[i]);
}

//Set boundaries for the children
node->children[@].min_x = node->min_x; node->children[@].max_x =
node->children[@].min_y = node->min_y; node->children[@].max_y =

node->children[2].min_x = node->min_x; node->children[2].max_x =

//Put old particle into the appropriate child
place_particle(node->particle, node);

//Put new particle into the appropriate child
place_particle(new_particle, node);

//It now has children

node->has_children = 1;

(node->min_x + node->max_x)/2;
(node->min_y + node->max_y)/2;

node->children[1].min_x = (node->min_x + node->max_x)/2; node->children[1].max_x =
node->children[1].min_y = node->min_y; node->children[1].max_y = (node->min_y + node->max_y)/2;

node->max_x;

(node->min_x + node->max_x)/2;

node->children[2].min_y = (node->min_y + node->max_y)/2; node->children[2].max_y =

node->children[3].min_x = (node->min_x + node->max_x)/2; node->children[3].max_x =
node->children[3].min_y = (node->min_y + node->max_y)/2; node->children[3].max_y =

node->max_y;

node->max_x;
node->max_y;

//Add the new particle to the appropriate children
else {
//Put new particle into the appropriate child
place_particle(new_particle, node);
}
}

/*
* Puts a particle in the right child of a node with children.
*/
void place_particle(int particle, struct node_t *node) {
if(x[particle] <= (node->min_x + node->max_x)/2 && y[particle] <= (node->min_y + node->max_y)/2) {
put_particle_in_tree(particle, &node->children[0]);
} else if(x[particle] > (node->min_x + node->max_x)/2 && y[particle] < (node->min_y + node->max_y)/2)
put_particle_in_tree(particle, &node->children[1]);
} else if(x[particle] < (node->min_x + node->max_x)/2 && y[particle] > (node->min_y + node->max_y)/2)
put_particle_in_tree(particle, &node->children[2]);
} else {
put_particle_in_tree(particle, &node->children[3]);
}
i
[double calculate_mass(struct node_t *node) {
if(!node->has_particle) {
node->total_mass = 0;
} else if(!node->has_children) {
node->total_mass = mass[node->particle];
} else {
node->total_mass = 0;
for(int i = 0; 1 < 4; i++) {
node->total_mass += calculate_mass(&node->children[i]);
¥
¥

return node->total_mass;
i
double calculate_center_of_mass_x(struct node_t *node) {
if(!node->has_children) {
node->c_x = x[node->particle];
} else {
node->c_x = 0;
double m_tot = 0;
for(int i = 0; i < 4; i++) {
if(node->children[i].has_particle) {
node->c_x += node->children[i].total_mass*calculate_center_of_mass_x(&node->children[i]);
m_tot += node->children[i].total_mass;
}
}
node->c_x /= m_tot;
}
return node->c_x;
i
double calculate_center_of_mass_y(struct node_t *node) {
if(!node->has_children) {
node->c_y = y[node->particle];
} else {
node->c_y = 0;
double m_tot = 0;
for(int i = 0; 1 < 4; i++) {
if(node->children[i].has_particle) {
node->c_y += node->children[i].total_mass*calculate_center_of_mass_y(&node->children[i]);
m_tot += node->children[i].total_mass;
}
}
node->c_y /= m_tot;
}
return node->c_y;

}

~ -~

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019 12

Problem E
FDM in Heat Equation

The heat equation is solved by derivatives in space and time, as shown below:

oT aZT_FaZT_FaZT
ot~ \oxz T ayz T 522

Some numerical methods solve it based on approximate approach. One of these methods is
called Finite Different Method — FDM — which resolves derivatives through finites

differences. Thus, the numerical approximate based on FDM is given by:

t t t t
err _ AT (Misa e T Ui b Ui Uk e
iLjk — 2 t t _ t i,j,k
Ah U jjerr Ui ja-1 — 6 X Ui jk

u

where time and space are discretized in regular steps. To simplify the problem, we adopt the
same space discretization in all axes.

The initial condition is given by a cube with zero Celsius degree. The cube measures x, y and
z centimeters, relying on the input problem parameter. Each face of the cube is heated to a
temperature of 100 Celsius degree. Thus, sequential code calculates how long all the cube
will take to be in 100-Celsius degree, using the previous FDM equation with 1.0 for the

material heat velocity propagation.

Input

An input consists of only one test case. The first line contains tow positive values for At and
Ah (both < 1.0). The second line contains three positive values (z, y, x) of a cube
(1<zv,x<100).

The input must be read from the standard input.

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019 13

Output
The output has only one line. It contains the number of time steps to make the entire cube at
100-Celsius degree.

The output must be written to the standard output.

Example
Input example 1 Output example 1
0.01 0.25 14383

10 10 20

14

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019

void mdf_heat(double *** _ restrict__ u@,
double *** _ prestrict__ ul,
const unsigned int npX,
const unsigned int npY,
const unsigned int npZ,
const double deltaH,
const double deltaT,
const double inErr,
const double boundaries){
register double alpha = deltaT / (deltaH * deltaH);
register int continued = 1;
register unsigned int steps = 9;
while (continued){
steps++;
for (unsigned int i = 0; i pZ; i++){
for (unsigned int j npY; j++){
for (unsigned int k = 0; k < npX; k++){

Ul
()
-
. A
A S

register double left = boundaries;
register double right = boundaries;
register double up = boundaries;
register double down = boundaries;
register double top = boundaries;

register double bottom = boundaries;

if ((J > @) & (3 < (npY - 1))){
up = ue[i][]-1][k];
down = u@[i][j+1][k];

else up = ue[i][j-11[k];

if ((1 > 0) && (i < (npz - 1))){
top = ul[i-1][j][k];
bottom = ue[i+1][j][k];

}else if (i == @) bottom

else top = uo[i-1][j1[k];

left + right - (6.0f * ue[i][j1[k])) + ue[il[j]1[k];

if ((k > @) & (k < (npX - 1))){

left = uwo[i][j]1[k-1];

right = ue[i][j][k+1];
}else if (k == @) right = uo[i][j][k+1];
else left = u@[i][j]I[k-1];

}else if (j == @) down = ue[i][j+1][k];

ue[i+1]1[31[k];

ul[i][j][k] = alpha * (top + bottom + up + down +

}
}
}
double ***ptr = u0;
ue = ul;
ul = ptr;

double err = 0.0f;
double maxErr = 0.0f;
for (unsigned int i = @; i < npzZ; i++){
for (unsigned int j = 0; j < npY; j++){
for (unsigned int k = 0; k < npX; k++){
err = fabs(u@[i][j][k] - boundaries);
if (err > inErr)
maxErr = err;
else
continued = 0;

}

fprintf(stdout, "%u\n", steps);

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019 15

Problem F
Closest Pair of Points

Given an array of n points in the 2D plane, the problem is to find out the closest pair of points
in the array. This problem arises in a number of applications. For instance, it can be used to
monitor airplanes that come too close together in an air-traffic control system, thus avoiding
possible collisions. The following formula is used to determine the distance between two

points p and q in a 2D plane:

llpqll =,J(px-qx)24-(Py-qy)2

The given sequential program calculates the distance between the closest pair of points in
O(n(log n)%) time using a Divide and Conquer strategy. Your task is to improve the

performance of the program using parallel strategies.

Input

The input contains only one test case. The first line of input contains an integer N
(2 < N < 80,000,000), which denotes the number of points. Each of the next N lines contains
two floats X and Y (-10,000,000 < X, Y <10,000,000 with exactly 3 digits after the decimal),
which denote the coordinates of the i-th point. There is no coincident point in the input data.

The input must be read from the standard input.

Output
The output must contain a single line with a float D, denoting the distance between the
closest pair of points. D must contain exactly 6 digits after the decimal.

The output must be written to the standard output.

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019

Example

16

Input example 1

5

-5.000 2.000
-15.000 -7.000
0.000 0.000
6.000 3.000
2.000 4.000

Output example 1

4.123106

17

14™ Marathon of Parallel Programming — SBAC-PAD & WSCAD — 2019

inline double abs2(double a) {
if (a < 0.09)
return -a;
return a;

bool compX(const Point& a, const Point& b) {
if (abs2(a.x-b.x)<EPS)
return a.y<b.y;
return a.x<b.x;

bool compY(const Point& a, const Point& b) {
if (abs2(a.y-b.y)<EPS)

return a.x<b.x;
return a.y<b.y;

inline double sqr(double a) {
return a * a;

inline double distance(Point a, Point b) {
return sqr(a.x - b.x) + sgr(a.y - b.y);

double solve(int 1, int r) {
double minDist = INF;
double dist;
int i, j;
if(r-1+1 <= BRUTEFORCESSIZE){
for(i=1; i<=r; i++){
for(j = i+1; j<=r; j++) {
dist = distance(point[i], point[j]);
if(dist<minDist){
minDist = dist;

}

return minDist;

int m = (1+r)/2;

double dL = solve(l,m);

double dR = solve(m,r);
minDist = (dL < dR ? dL : dR);

w:#xnuh
for(i=m-1;

-

i>=1 && abs(point[i].x-point[m].x)<minDist;
border[k++] = point[i];
}
for(i=m+1; i<=r && abs(point[i].x-point[m].x)<minDist;
i++){

border[k++] = point[i];

if (k-1 <= 1) return minDist;
sort(&border[1l], &border[1l]+(k-1), compY);

for(i=1; i<k; i++){
for(j=i+1; j<k && border[j].y - border[i].y <
minDist; j++){
dist = distance(border[i], border[j]);
if (dist < minDist){
minDist = dist;

return minDist;

