
14
th

 Marathon of Parallel Programming

SBAC-PAD & WSCAD – 2019

October 17
th

, 2019.

Warmup Rules for Local Contest

For all problems, read carefully the input and output session. For all problems, a sequential

implementation is given, and it is against the output of those implementations that the output

of your programs will be compared to decide if your implementation is correct. You can

modify the program in any way you see fit, except when the problem description states

otherwise. You must upload a compressed file (zip) with your source code, the Makefile and

an execution script. The script must have the name of the problem. You can submit as many

solutions to a problem as you want. Only the last submission will be considered. The

Makefile must have the rule all, which will be used to compile your source code. The

execution script runs your solution the way you design it – it will be inspected not to corrupt

the target machine.

All Local Teams must use the computers that the organization provides. Only the judges have

access to the judge machine.

The execution time of your program will be measured running it with time program and

taking the real CPU time given. Each program will be executed at least three times with the

same input and the mean time will be taken into account. The sequential program given will

be measured the same way. You will earn points in each problem, corresponding to the

division of the sequential time by the time of your program (speedup). The team with the

most points at the end of the marathon will be declared the winner.

This problem set contains 1 problem; pages are numbered from 1 to 1.

14
th

 Marathon of Parallel Programming – SBAC & WSCAD – 2019 – Warmup i

General information

Compilation

You must use CC or CXX inside your Makefile. Be careful when redefining them! There is a

simple Makefile inside you problem package that should be modified. Example:

FLAGS=-O3

EXEC=sum

CXX=icpc

all: $(EXEC)

$(EXEC):

 $(CXX) $(FLAGS) $(EXEC).cpp -c -o $(EXEC).o

 $(CXX) $(FLAGS) $(EXEC).o -o $(EXEC)

Running

You must have an execution script that has the same name of the problem. This script runs

your solution the way you design it. There is a simple script inside you problem package that

should be modified. Example:

$ cat A

#!/bin/bash

This script runs Problem A

export OMP_NUM_THREADS=32

mpiexec –n 32 ./sum

./sum

Measure the execution time of your solution using time program. Add input/output

redirection when collecting time. Use diff program to compare the original and your solution

results. Example:

$ time –p ./A < original_input.txt > my_output.txt

real 4.94

user 0.08

sys 1.56

$ diff my_output.txt original_output.txt

$

14
th

 Marathon of Parallel Programming – SBAC & WSCAD – 2019 – Warmup 1

Problem A

Harmonic progression sum

The simplest harmonic progression is

1
1⁄ , 1 2⁄ , 1 3⁄ , 1 4⁄ , 1 5⁄ ,…

Let 𝑆𝑛 = ∑ (1 𝑖⁄)
𝑛
𝑖=1 , compute this sum to arbitrary precision after the decimal point.

Input

The input contains only one test case. The first line contains two values: the first is the

number of digits D and the second is the value of N. Consider (1 ≤ D ≤ 10
5
) and

(1 ≤ N ≤ 10
8
).

The input must be read from the standard input.

Output

The output contains only one line printing the value of the sum with exact D precision.

The output must be written to the standard output.

Example

Input example 1

12 7

Output example 1

2.592857142857

