
15th Marathon of Parallel Programming
WSCAD – 2020

Calebe Bianchini1 and Marcos Amaris2

1Mackenzie Presbyterian University

2Federal University of Pará

Rules for Remote Contest
For all problems, read carefully the input and output session. For all problems, a sequen-
tial implementation is given, and it is against the output of those implementations that the
output of your programs will be compared to decide if your implementation is correct.
You can modify the program in any way you see fit, except when the problem descrip-
tion states otherwise. You must upload a compressed file (zip) with your source code, the
Makefile and an execution script. The script must have the name of the problem. You
can submit as many solutions to a problem as you want. Only the last submission will
be considered. The Makefile must have the rule all, which will be used to compile your
source code. The execution script runs your solution the way you design it – it will be
inspected not to corrupt the target machine.

The execution time of your program will be measured running it with time program and
taking the real CPU time given. Each program will be executed at least three times with
the same input and the mean time will be taken into account. The sequential program
given will be measured the same way. You will earn points in each problem, correspond-
ing to the division of the sequential time by the time of your program (speedup). The
team with the most points at the end of the marathon will be declared the winner.

This problem set contains 6 problems; pages are numbered from 1 to 8.

General Information
Compilation

You should use CC or CXX inside your Makefile. Be careful when redefining them!
There is a simple Makefile inside you problem package that you can modify. Example:

FLAGS=-O3
EXEC=sum
CXX=icpc

all: $(EXEC)

$(EXEC):
$(CXX) $(FLAGS) $(EXEC).cpp -c -o $(EXEC).o
$(CXX) $(FLAGS) $(EXEC).o -o $(EXEC)

Each judge machine has its group of compilers. See them below and choose well when
writing your Makefile. The compiler that is tagged as default is predefined in CC and
CXX variables.

machine compiler variables

host / tsubasa

GCC 4.8.5 20150623
(default)

CC=gcc
CXX=g++

GCC 10.2.0
CC=gcc-10.2

CXX=g++-10.2

NEC Compiler 3.0.8
CC=ncc

CXX=nc++

MPI

GCC 8.3.0
(default)

CC=gcc
CXX=g++

GCC 10.2.0
CC=gcc-10.2

CXX=g++-10.2

Open MPI 3.1.3
CC=mpicc

CXX=mpic++

knl

GCC 8.3.0
(default)

CC=gcc
CXX=g++

GCC 10.2.0
CC=gcc-10.2

CXX=g++-10.2

Intel C/C++ Compiler 19.1.0.166
CC=icc

CXX=icpc

gpu

GCC 8.3.0
(default)

CC=gcc
CXX=g++

GCC 10.2.0
CC=gcc-10.2

CXX=g++-10.2

Cuda 10.2, V10.2.89, Driver Ver: 440.33.01
CC=nvcc

CXX=nvcc

Submitting

General information

You must have an execution script that has the same name of the problem. This script runs
your solution the way you design it. There is a simple script inside you problem package
that should be modified. Example:

#!/bin/bash
This script runs a generic Problem A
Using 32 threads and OpenMP
export OMP_NUM_THREADS=32
OMP_NUM_THREADS=32 ./sum

Submitting MPI

If you are planning to submit an MPI solution, you should compile using mpicc/mpic++.
The script must call mpirun/mpiexec with the correct number of processes (max: 4). It
must use a file called machines that are generated by the auto-judge system - do not
create it.

#!/bin/bash
This script runs a generic Problem A
Using MPI in the entire cluster (4 nodes)
'machines' file describes the nodes
mpirun -np 4 -machinefile machines ./sum

Comparing times & results
In your personal machine, measure the execution time of your solution using time pro-
gram. Add input/output redirection when collecting time. Use diff program to compare
the original and your solution results. Example:

$ time -p ./A < original_input.txt > my_output.txt
real 4.94
user 0.08
sys 1.56

$ diff my_output.txt original_output.txt

Do not measure time and do not add input/output redirection when submitting your so-
lution - the auto-judge system is prepared to collect your time and compare the results.

Problem A
Maximum Tropical Path Problem

Let G = (V ;E) a simple graph, undirected, where V = v1, v2, . . . , vn denote the vertices
and E = e1, e2, . . . , em denotes the edges. A vertex-colored graph is such that the vertices
are colored by only one of the colors that are represented by integer numbers. Here a
coloring is a simple assignment of colors to the vertices of the graph. A tropical path P is
a path in G, (v1, v2, . . . , vk), where each color of the initial graph appears at least once in
P . The problem consists of finding a path with the biggest number of colors used by the
original graph. One tropical path clearly will be an optimum solution to this problem.

Input
An input represents only a test case. The first line contains two integer values N and K
that represent the number of vertices and the number of colors, respectively. Each of the
following N lines contains an integer value c(0 ≤ c < K) which represents the color
assigned to the vertex. The next line has another integer A that represents the number of
edges of the graph, and finally, each of the following A lines contains a pair of integer
values x and y (0 ≤ x < N ; 0 ≤ y < N) that represents the ends of the respective edge.
The entry must be read from the standard entry.

The input must be read from the standard input.

Output
The output contains two lines. The first line is a sequence of integer values, separated by
the symbol: “-”, which represent the vertices of the path. The returned path is such that it
has as many colors as possible. The second line contains an integer value that represents
the number of colors present in the path.

The output must be written to the standard output.

Example
Input Output

4 3 0 1 2
0 3
1
2
1
6
0 1
0 2
0 3
1 2
1 3
2 3

1

Problem B
Recursive Quicksort of Positive Integers

From Wikipedia:

Quicksort (sometimes called partition-exchange sort) is an efficient sorting
algorithm. Developed by British computer scientist Tony Hoare in 1959
and published in 1961, it is still a commonly used algorithm for sorting.
When implemented well, it can be about two or three times faster than its
main competitors, merge sort and heapsort.

Your job is to create a parallel solution for the proposed quicksort algorithm.

Input
The first and unique argument for the program is the number of positive integers that
should be generated to run the code. The seed of the random number generator is set to
zero to generate reproducible cases for the same case size. The program will compute
the MD5 checksum of the integers after quicksort to guarantee the correctness of the
algorithm.

The input must be read from the standard input.

Output
The output contains just one line. The program will output the MD5 checksum of the
sorted array.

The output must be written to the standard output.

Example

Input Output

10000000 0f37a269c52bc42856f5acadd51bd05a

2

Problem C
Jacobi Linear Solver Method

Several problems require a linear system solution. In doing so, some numerical methods
can be used to resolve linear system. One of useful is named Jacobi method.

Thus, given a linear system:
a11·x1 + a12·x2 + · · · + a1n·xn = b1
a21·x1 + a22·x2 + · · · + a2n·xn = b2

...
...

...
am1·x1 + am2·x2 + · · · + amn·xn = bn

Jacobi method re-writes as following:

xk
1 = 1

a11
(b1 − a12x

k−1
2 − a13x

k−1
3 − · · · − a1nx

k−1
n)

xk
2 = 1

a22
(b2 − a21x

k−1
1 − a23x

k−1
3 − · · · − a2nx

k−1
n)

xk
3 = 1

a33
(b3 − a31x

k−1
1 − a32x

k−1
2 − · · · − a3nx

k−1
n)

...
xk
n = 1

ann
(bn − an1x

k−1
1 − an3x

k−1
3 − · · · − ann−1x

k−1
n−1)

For each step k, new values of xth is found out. This procedure is repeated until the
method converge. Which means, xk is equal to xk−1.

Input
The input has a binary format.

The input must be read from the standard input.

Output
Output is two integers: the first one is the number of time steps necessary to solver a
linear system. The second line informs if the linear system is correct. Where correct is 1
and failure is 0.

The output must be written to the standard output.

Example

Input Output

binary format 6
1

3

Problem D
All Permutations, Sorted

A permutation is any arrangement of the elements of a finite multiset into a ordered se-
quence. E.g., there are three distinct permutations of the finite multiset {B,O,B}, namely
(B,B,O), (B,O,B), and (O,B,B). A given string and its anagrams are distinct permu-
tations from the multiset formed by the string’s symbols.

Two permutations are defined to be equal iff their elements are sorted in the same order
and to be distinct otherwise. For a given finite multiset of size n the number of all possible
permutations is n!, while the number of distinct permutations is n!/Π(ni!), where ni is
the multiplicity of element i in the multiset. E.g., {B,O,B} has n = 3 and, thus, 3! = 6
possible permutations and n!/nB! · nO! = 3!/2! · 1! = 3 distinct permutations.

The problem to be solved is: given one string, to generate all its distinct permutations
sorted in lexicographic (a.k.a. alphabetic) order.

The proposed sequential solution is an implementation of an in-place algorithm based
on continuasly finding the next lexicographic permutation, as long as one is found. It
can handle repeated values, for which case it generates each distinct multiset permutation
only once. For a given input string s = (s1, . . . , sn), its description is as follows.

1. Find the minimal lexicographic permutation. Sort s in weakly increasing order,
which gives the its lexicographically minimal permutation.

2. Find longest non-increasing suffix. Find the largest index k such that sk < sk+1.
If no such index exists, the permutation is the last permutation.

3. Find the rightmost successor. Find the largest index l greater than index k such
that sk < sl.

4. Swap. Swap the value of ak with that of al.
5. Reverse. Reverse the sequence from sk+1 up to and including the final element

sn.

This method uses about 3 comparisons and 1.5 swaps per permutation, amortized over the
whole sequence, not counting the initial sort.

Input

The input must be read from the standard input. It is a single string whose distinct per-
mutations (ignoring whitespaces) will be generated.

The input must be read from the standard input.

Output

The input must be written to the standard output. It is a list of all permutations of the
input string’s symbols in lexicographic order.

The output must be written to the standard output.

4

Example

Input Output

BILL [B I L L]
[B L I L]
[B L L I]
[I B L L]
[I L B L]
[I L L B]
[L B I L]
[L B L I]
[L I B L]
[L I L B]
[L L B I]
[L L I B]

5

Problem E
Yet More Primes

Prime test is a common task in many applications, specially for security, cryptography,
and other interest areas. There are a number of techniques used to verify if a number is
prime, and the common problem is that all techniques consumes lots of time.

The problem is easy to solve, giving the number to be tested and time enough to calculate.
But a weird scientist took our numbers, and cut them in two halves, so we have first to
re-arrange the numbers, looking for the primes. In this case, we have the certainty that all
the numbers we have are primes, but the problem is how to re-order them

Input
In the first line, there is the number P of prime numbers (1 ≤ P ≤ 1000). Then, 2P lines
with parts of the numbers to be tested, with no order. Prime numbers in this problem are
taken as strings, so first half and second half simply means an arbitrary cut of such string.
For instance, prime number 504155039 can be cut in 5041 and 55039, or 504155 and 039

Note that second half numbers could begin with a lead zero, so you must take it into
account. Of course, this doesn’t happen with the first half.

The input must be read from the standard input.

Output
You have to print the list of the P prime numbers, in ascendant order.

The output must be written to the standard output.

Example

Input Output

4 1000213
50415 5041501
100 5575001
5041 504155039
55750 504155713
5039
01
0213
55713

6

Problem F
Graph Search on a DAG

Several problems in Computer Science can be modeled using graphs. For example, in
scheduling algorithms, dependent tasks can be expressed as nodes, while an edge repre-
sents a dependency relation between two nodes. Such a strategy enables the scheduler to
easily identify independent tasks, i.e., that can execute in parallel. The given sequential
code implements a graph search on a DAG (Directed Acyclic Graph). The goal is recur-
sively computing a maximal value starting from a given node. The algorithm works as
follows:

• starting at a given node, check all neighbors and continuous the search at the
neighbor with the highest value;

• for each node, the search returns the sum of the current node value plus the visited
neighbor’s computed sum.

Figure F.1: when starting at node 135, the
answer is 835.

Input
The first line contains the mandatory header, which has two parts:

• the first value is an integer describing the number of entries in the file;
• the following values are a list of values to be computed (separated with spaces).

The remaining lines have the following structure:
• the first value is the node ID (integer)
• the second value represents the node value (float)
• the third value is a list of variable size containing node neighbors IDs.

The input must be read from the standard input.

7

Output
The output contains one line per value in the list of values to be computed. Each line
has the node ID and the calculated value for this node. The first and second values are
separated by ”: ”.

The output must be written to the standard output.

Example

Input Output

30 94 89 94: 959.023438
67 56.547957 65 25 89: 456.091675
91 154.764552 90 86
86 142.674735 84 83 76
92 151.182508 90 88
73 69.615694 65 43
88 130.398908 87 82 79
87 114.606645 81 78
79 89.158561 77 67 61
75 101.959048 73 67 49
84 114.622151 81 74
74 85.821272 73 66 46
89 142.674675 87 83 80
71 73.113959 69 67 37
80 110.092684 77 68 64
72 85.821312 69 68 40
65 43.711854 19
94 178.071564 93
77 69.614531 65 55
69 57.009560 65 31
68 56.500064 65 28
78 101.938958 77 66 58
76 105.209124 73 68 52
90 138.593663 85
66 56.506839 65 22
70 73.114013 69 66 34
93 170.095520 92 91 89
85 130.398836 84 82 75
81 81.621637 70
82 94.149309 81 71
83 126.874282 81 72

8

