
16th Marathon of Parallel Programming
SBAC-PAD & WSCAD – 2021

Calebe Bianchini1 and Maurı́cio Aronne Pillon2

1Mackenzie Presbyterian University

2Santa Catarina State University

Rules for Remote Contest
For all problems, read carefully the input and output session. For all problems, a sequen-
tial implementation is given, and it is against the output of those implementations that the
output of your programs will be compared to decide if your implementation is correct.
You can modify the program in any way you see fit, except when the problem descrip-
tion states otherwise. You must upload a compressed file (zip) with your source code, the
Makefile and an execution script. The script must have the name of the problem. You
can submit as many solutions to a problem as you want. Only the last submission will
be considered. The Makefile must have the rule all, which will be used to compile your
source code. The execution script runs your solution the way you design it – it will be
inspected not to corrupt the target machine.

The execution time of your program will be measured running it with time program and
taking the real CPU time given. Each program will be executed at least three times with
the same input and the mean time will be taken into account. The sequential program
given will be measured the same way. You will earn points in each problem, correspond-
ing to the division of the sequential time by the time of your program (speedup). The
team with the most points at the end of the marathon will be declared the winner.

This problem set contains 1 problem; pages are numbered from 1 to 1.



General Information
Compilation
You should use CC or CXX inside your Makefile. Be careful when redefining them!
There is a simple Makefile inside you problem package that you can modify. Example:

FLAGS=-O3
EXEC=sum
CXX=icpc

all: $(EXEC)

$(EXEC):
$(CXX) $(FLAGS) $(EXEC).cpp -c -o $(EXEC).o
$(CXX) $(FLAGS) $(EXEC).o -o $(EXEC)

Each judge machine has its group of compilers. See them below and choose well when
writing your Makefile. The compiler that is tagged as default is predefined in CC and
CXX variables.

machine compiler command

host
GCC 10.2.11

(default)
C = gcc

C++ = g++

Intel C/C++ Compiler 19.1.3.304
C = icc

C++ = icpc

MPI

Intel MPI Compiler 2019u12
(default)

C = mpiicc
C++ = mpiicpc

Intel C/C++ Compiler 19.1.3.304
C = icc

C++ = icpc

GCC 10.2.11
C = gcc

C++ = g++

gpu
NVidia CUDA 11.2

(default)
C = nvcc

C++ = nvcc

GCC 8.3.1
C = gcc

C++ = g++

Submitting
General information
You must have an execution script that has the same name of the problem. This script runs
your solution the way you design it. There is a simple script inside you problem package
that should be modified. Example:

#!/bin/bash
# This script runs a generic Problem A
# Using 32 threads and OpenMP
export OMP_NUM_THREADS=32
OMP_NUM_THREADS=32 ./sum



Submitting MPI

If you are planning to submit an MPI solution, you should compile using mpiicc/mpiicpc.
The script must call mpirun/mpiexec with the correct number of processes (max: 4). It
must use a file called machines that are generated by the auto-judge system - do not
create it.

#!/bin/bash
# This script runs a generic Problem A
# Using MPI in the entire cluster (4 nodes)
# 'machines' file describes the nodes
mpirun -np 4 -machinefile machines ./sum

Comparing times & results
In your personal machine, measure the execution time of your solution using time pro-
gram. Add input/output redirection when collecting time. Use diff program to compare
the original and your solution results. Example:

$ time -p ./A < original_input.txt > my_output.txt
real 4.94
user 0.08
sys 1.56

$ diff my_output.txt original_output.txt

Do not measure time and do not add input/output redirection when submitting your so-
lution - the auto-judge system is prepared to collect your time and compare the results.



 1 

Problem A 

Harmonic progression sum 

The simplest harmonic progression is 

1
1⁄ , 1 2⁄ , 1 3⁄ , 1 4⁄ , 1 5⁄  ,… 

 

Let 𝑆𝑛 = ∑ (1 𝑖⁄ )
𝑛
𝑖=1 , compute this sum to arbitrary precision after the decimal point. 

 

 

Input 

The input contains only one test case. The first line contains two values: the first is the 

number of digits D and the second is the value of N. Consider (1 ≤ D ≤ 105) and  

(1 ≤ N ≤ 108). 

The input must be read from the standard input. 

 

 

Output 

The output contains only one line printing the value of the sum with exact D precision. 

The output must be written to the standard output. 

 

 

Example 

 

Input example 1 
 

12 7 

 

Output example 1 
 

2.592857142857 
 

 

 


